

Application Note AN2298

PSoC™-Based USB Device Design By Example

Author: John Hyde
Associated Project: Yes

Associated Part Family: CY8C24794
PSoC Designer Version: 4.2

Associated Application Notes: Many Apply

Abstract
The real-world interfacing capability of the Cypress PSoC™ device family is well known and now
this technology can be used to exchange data with a PC application program. This note
introduces the newest member of the PSoC family, the CY8C24794, which includes a full-speed
USB User Module alongside the now-familiar, programmable IO user modules to provide an
instant connection of a PC-to-real-world IO. Following a short introduction to the new elements
available to you, this note covers some USB essentials then works through three example
projects built using the CY8C24794 evaluation board. Within a day or so you will be using this
board to implement many of your latent USB product ideas.

Introduction
For the first time, a full-speed USB interface has
been added to a PSoC device. The CY8C24794
is a combination of technologies that will create
opportunities for a new range of low-cost, mixed-
signal USB products. To help you move rapidly
into this product area, Cypress Semiconductor
has created an evaluation board that connects
directly to the ICE-Cube in-circuit emulator.

This Application Note first describes the features
of the CY8C24794 and covers some essential
USB theory. It then applies this theory in three
example projects. We start with a basic “Buttons
and Lights” project so that you can quickly
familiarize yourself with the tools. We then step
through two more examples with gradually
increasing complexity. By the end of this
introductory note you will have the confidence to
tackle your own USB design. There are several
features of the evaluation board that are not used
in this note (serial connection, joystick,
CapSense™ buttons and slider), but these will be
the subject of future Application Notes (or a
design guide).

CY8C24794 Overview
The CY8C24794 ships in a 56-pin MLF package,
two of which are shown in Figure 1.

Figure 1. The MLF56 Package is Small!

This tiny 8mm x 8mm x 1mm package belies the
capability of the component, which is even more
evident in the block diagram shown in Figure 2.

7/11/2005 Revision A - 1 -

AN2298

Figure 2. Block Diagram of the CY8C24794 Component

The CPU of the CY8C24794 is an M8C that can
run up to 24 MHz. The M8C is an enhanced
version of the M8B that is used in the Encore
range of low-speed USB devices; it adds
addressing modes and a TST instruction that
removes the accumulator as a computational
bottleneck. The RAM is extended to 1024 bytes
and this is addressed as four pages of 256 bytes.
An added set of auto-indexing instructions and
CPU flag bits make multi-page operations
efficient. The program memory includes a ROM-
based supervisor program and 16 KB of Flash
memory; note that the CY8C24794 can program
its own memory and this will be the subject of an
upcoming BootLoader Application Note. The
M8C is supported by a new release of the
iMAGEcraft C compiler that generates good
code; all of the examples in this note are written
in C.

The CY8C24794 has 4 programmable digital
blocks and 6 programmable analog blocks.
There are 50 IO lines and 48 of these can be
used as analog inputs. There are 2
programmable analog outputs. Cypress has
many Application Notes on these programmable
modules so I will not “reinvent the wheel” in this
note, rather, I will focus on the unique full-speed
USB User Module.

The USB User Module is implemented as a
separate serial interface engine with a dedicated
256-byte RAM buffer. This serial interface engine
manages up to four data endpoints that can be
individually programmed as IN or OUT endpoints.
Endpoints are explained in the “USB Essentials”
section.

Operation of the USB interface is autonomous
and operates in parallel with standard CPU
operations. The USB User Module includes a
library of routines to manage data flow into and
out of the data endpoints. In fact, the USB theory
that you need to understand to use the
CY8C24794 effectively is minimal (and is
covered in a later section) since the library
routines do almost all of the work for you. This is
why I called the CY8C24794 “an instant
connection” since the base software needed for
USB operation is already written, debugged and
included so that you can focus upon the data
transfer requirements of your USB device.

To further ease the journey into USB land, the
user module includes a wizard that guides you
through the creation of the descriptors required
by the USB standard. I will explain these in more
detail in the example sections. The user module
also includes an HID Wizard to simplify the
construction of Human Input Device interfaces; I
will also cover this in the example sections.

The CY8C24794 also includes a set of system
resources such as I2C, digital clocks, decimator,
two MACs, POR, and LVD reset circuitry.

CP 1K
RA SROM 16K

Flas

6
Analo
Block

4
Digita
Block

Rese
&

Clock

Ful
Spee
US

System
IO

50 IO pins

CPU 1K
RAM

16K SROM Flash

6
Analog
Block

4
Digital
Block

Rese
and

Clock

FullSystem SpeedIO USB

50 IO Pins

7/11/2005 Revision A - 2 -

AN2298

Evaluation Board
An annotated photograph of the CY8C24794
evaluation board is shown in Figure 3. The sharp-
eyed reader will notice that the component shown
in Figure 1 is not on the board! The evaluation
board uses a CY8C24794 in a 100-pin PQFP
package: the extra pins of this package contain
debug signals that are controlled by the ICE-
Cube in-circuit emulator. The emulator adds
single-step, break-pointing and trace capabilities
to a CY8C24794 project. A block diagram of this
“debug” component is shown in Figure 4. If you
do not have an ICE-Cube you can still use the
ISSP connection to download and run programs.
I used the ICE-Cube connection to develop the
examples that we will work through later in this
Application Note.

Figure 4. The “Debug” CY8C24794
is in a Bigger Package

Figure 3. CY8C24794 Evaluation Board that we use for our Examples

CPU 1KB
RAM SROM 16KB

Flash

6
Analog
Blocks

4
Digital
Blocks

Reset
&

Clocks

Full
Speed
USB System

IO

50 IO pins

CPU
Control

Breakpoint
Logic

ICE
Interface

CPU 1K
RAM SROM 16KCPU

FlashControl

6
Analog
Blocks

4
Digital
Blocks

Reset
and

Clocks

Full- Breakpoint

Speed
USB

Logic

System
ICE IOInterface

50 IO

7/11/2005 Revision A - 3 -

AN2298

Figure 5. Representative USB Packets

he master schedules packets within a 1 msec

initially connects to the host.

unications scheme.

on process has
een successful and a device driver has been

es: the
terface defines what the device does and it is

USB Essentials
This section covers the essential USB theory that you need to know to use the CY8C24794 effectively. Note
that this is not the full story since I only cover simplified, full-speed, device operation details in this note; a
complete presentation takes about 100 pages and you can find these in the references. The key concept
that I want you to grasp is:

Device = ∑ (Configurations = ∑ (Interfaces = ∑ (Endpoints)))

∑ means “collection of.” The other terms will be
explained over the next two pages.

USB is a master-slave, shared, polled bus that
has its data transfer protocol defined in hardware.
A single master, also called a host controller,
controls all bus communications and shares the
available bandwidth of a USB channel between
up to 126 slaves, also called devices or functions.
A USB channel is just four wires: power, ground
and a generally differential pair of signals (some
of the protocol is implemented with individual line
signaling). The signal lines are uni-directional and
their direction is switched within the protocol.
There is no physical clock line but a clock is
embedded in the signaling scheme. USB
communication uses packets that include error
checking and several defined packet types are
used in sequence to implement a robust data
exchange. Figure 5 shows some of the more
interesting packets that the CY8C24794 will
handle.

Handled by the CY8C24794

T
frame. It always broadcasts a Start-Of-Frame
(SOF) packet every 1 msec, which can be used
as a timing reference. There is a lot of software
running on a host controller that decides which
packets should be allocated for which devices
within each frame: most packets (SOF is an
exception) include the address of the target
device and our device only needs to respond to
those packets that are addressed to it. Our
device is allocated its unique address when it

There is a defined process for a new device to
join the shared USB comm
This process, called enumeration, requires that
the device provide information in a pre-defined
format, called descriptors, to the host so that it
can identify the device and its characteristics.
The host controller uses this information to
decide if the device can be connected and, if so,
it assigns a unique address and loads a device
driver. Figure 6 shows the software view of a
USB device connection: notice, in particular, the
layered software levels in the PC and the
hierarchical structure of a device.

Let us assume that the enumerati
b
identified and loaded. A device can have several
configurations: most devices only have a single
configuration (all of our examples are like this)
but the USB specification allows the flexibility for
a single device to have multiple personalities
depending upon external factors such as
available power or IO capabilities. Only one
configuration may be active at any time.

A configuration can have several interfac

IN

ACK

ADDR EP CRC5

SOF CRC5Frame #

DATA0 Data CRC16Data
0 to 1023 bytes

NAK

IN

ACK

ADDR EP CRC5

SOF CRC5Frame #SOF CRC5Frame #

DATA0 Data CRC16Data
0 to 1023 bytes

NAK

in
the interface that has a matching device driver on
the PC. It is common for a single device to have
more than one interface – the device is logically
viewed as a collection of interfaces that operate
independently and multiple interfaces operate
concurrently. The USB specification defines
classes of devices and most operating systems
(Windows, OS X, Linux, etc.) provide class
drivers for a wide range of devices: examples
include printer class, mass storage class, Human
Interface Device (HID) class, hub class and audio
class. The benefit of using these existing class
drivers is that we don’t have to write any complex
PC-based driver software when we can define
the operation of our device within one or more of
the supported device classes. Our first set of
examples will use one or more HID class
interfaces, later examples will use other class
drivers. It is also possible to use a vendor-defined
interface and write your own device driver but, be
warned, this is a huge undertaking in
development, qualification and support. We will
not be going this route.

7/11/2005 Revision A - 4 -

AN2298

n interface can have several endpoints: an
endpoint is the source (IN endpoint) or sink (OUT
endpoint) of data and this is where the real world
attaches to USB. A device always has a control
endpoint (EP0) and other data endpoints are
defined as required by the data transfer needs of
our application. The CY8C24794 includes four
data endpoints, which enable the support of
several interfaces.

Looking again at Figure 6 we see a PC
application at the top of the diagram and the
endpoints at the bottom of the diagram. There is
a lot of software between these two and,
fortunately for us, it has all been written,
debugged and provided to us to use. To write
data to the real world, the PC application
program does a WriteFile(data) and the PC
software passes this down its stack and onto the
bus; here, the CY8C24794 accepts the data and
passes this to the required OUT endpoint buffer.
How it does this is interesting but we don’t need
to understand the details – we can just accept the
data at the CY8C24794 endpoint and act upon it.
Similarly, to provide data to the PC application,
we copy real-world data into an IN endpoint and
mark it valid; the PC will accept this data on its
next scheduled poll of the CY8C24794 endpoint
and pass it up the stack and buffer it waiting for
the application program to do a ReadFile(data).
Again, the CY8C24794 firmware need not be
concerned on how the data gets to the
application program, it just needs to know that it
must load and validate endpoint data and this
“appears” in the PC application program.

Are you beginning to see why I call the
CY8C24794 an “instant” connection to USB?

In summary, a USB device is a collection of
configurations (typically one), which is a
collection of interfaces (often several), which is a
collection of endpoints (EP0 always, typically one
or more data endpoints). At power-on it must
provide descriptors to the host and, once
enabled, can accept PC data from an OUT
endpoint and can provide data to a PC via an IN
endpoint.

Okay, that’s enough theory. Let’s get on with the
examples

Figure 6. Software View of a USB Connection

A

Application Code

Class Libraries

Class Device Driver(s)

USB Driver

Host Controller Driver

ReadFile, WriteFile

User
Ker

PC

nel

Application Code

Class Libraries

Class Device Driver(s)

USB Driver

Host Controller Driver

ReadFile, WriteFile

User
Ker

PC

nel

Device

To other
devices

E
P
0

in
E
P

out
E
P

Configuration

Interface

Real World

USB
Cable

Device

To other
devices

E
P
0

in
E
P

out
E
P

Configuration

Interface

Real World

USB
Cable

7/11/2005 Revision A - 5 -

AN2298

h that it does not distract us

Figure 7 shows the hardware setup that we will
use for all of the examples in this note. I show
two PCs in the figure for clarity of explanation; in
reality you could use a single PC running
different programs in separate windows but the
text assumes two logical PCs. The preferred
development method uses an ICE-Cube in-circuit
emulator but, if you don’t have one, the mini-
programmer will suffice for these debugged
examples.

Example 1: Buttons and Lights
Our first example is the simplest that I could think
of: the hardware equivalent of the fundamental
“Hello World” program is “Buttons and Lights.”
This has the benefit of being useful (it moves
button data from the real world and into the PC
and moves lights data from the PC into the real
world) but the major reason I chose it is that it is
simple enough suc
from the main goal of the first example, which is
an introduction to the new aspects of the tools
and development process.

Figure 7. Hardware Setup for the Examples

We first need to set up the hardware for this
example. Jumper wires should be added to
connect the LEDs to port 3 and jumper wires will
be used as the “buttons” on port 2. The
connections are shown in Figure 8. I chose
simple hardware so that we could focus on the
development process.

Figure 8. Jumper Wires for Example 1

I assume that you have the PSoC Designer™
software loaded on your PC and that you are
familiar with it. If this is your first experience with
this toolset, please read AN2010, “Getting
Started with PSoC” (available on the CD-ROM
included with these examples or on the Cypress
web site) before proceeding further.

Start PSoC Designer and open example1.soc in
the Debugger subsystem (we will come back
later to the other views). At this time you should
also start example1.exe on the host PC: the
display will look similar to Figure 9 and the
message box should tell us that it cannot find the
ButtonsAndLights device. This is okay since we
haven’t started our device software running yet. I
wrote the host program in Visual Basic and, if you
have a copy, you will be able to step through the
code.

USB

PSoC Designer PC

ICE

Evaluation
Board

USB

Target Host PC

-cube

Mini-
Programmer

USB

USB

PSoC Designer PC

ICE

Evaluation
Board

USB

Target Host PC

-cube

Mini-
Programmer

USB

7/11/2005 Revision A - 6 -

AN2298

 nor I am not expecting you to have Visual Basic
is it important for this example but the curious
reader can open the source files (*.frm and *.bas
using any text editor) to see exactly how I created
the host program.

Figure 9. Companion Example 1 Host Program

he important thing to realize is that with all USB
evice designs you are always dealing with two
rograms: one in the device and one on the host,
nd these must talk nicely to each other for you
 make progress! Rather than take valuable

pace with all the source code listings in this
pplication Note, I have drawn a flow chart for
ach program in Figure 10 (note that all of the
ource listings are on the CD-ROM that
ccompanies this Application Note).

eviewing Figure 10 you will note that both
rograms are event-driven endless loops.

r and ISSP cable”; once the device is
rogrammed it will start to execute its program.

Watch the host PCs’ screen and you will see the
enumeration of a new device taking place.
Depending upon the version of your operating
system, you will see different messages appear
on the screen. Once this initialization is
completed, both programs will be controlled by
their event loops. When the device detects a
button press event it will send a “buttons” report
to the host. When the host detects a button press
event it updates the local LED display and sends
a “lights” report to the device. When the host
receives a “buttons” report it will update the local
LEDs (which causes a “lights” report to be
generated). When the device receives a “lights”
report it will update its local LEDs.

Try this now! Click the host soft buttons or insert
jumpers on the evaluation board to “press”
buttons. I added a small “frill” in the host
program: you can change the function that drives
the LEDs but note that the host LEDs and the
evaluation board LEDs are always in sync.

We have two CPUs successfully communicating
using USB! The next section looks in detail how
we accomplished this task.

Figure 10. Flow Charts of the Device Program and the Host Program are Similar

T
d
p
a
to
s
A
e
s
a

R
p

After some initialization, both programs wait for a
timer event and the host program additionally
waits for a button click (the device program
handles its buttons in the timer routine).

Returning to the PSoC PC, start the ICE-Cube
debugger running. If you do not have an ICE-
Cube then this step should be replaced with
“program the target device using the mini-
programme
p

7/11/2005 Revision A - 7 -

Start

Connect
To Host

Wait

Timer

Return

Send
Buttons
Report

Local
Button
Press?

Lights
Report
Recv?

Update
Local
LEDs

yes

no

no

yes

Start

Look for
Device

Wait

Timer

Return

Send
Lights
Report

Device
Connected?

Buttons
Report
Recv? yes

yes

no

no

Button
Click

Update
Local
LEDs

Return

Start

Connect
To Host

Wait

Timer

Return

Send
Buttons
Report

Local
Button
Press?

Lights
Report
Recv?

Update
Local
LEDs

yes

no

no

yes

Start

Look for
Device

Wait

Timer

Return

Send
Lights
Report

Device
Connected?

Buttons
Report
Recv? yes

yes

no

no

Button
Click

Update
Local
LEDs

Return

AN2298

e 1 and, as you can see, it is
traightforward.

void main() {
 init_hardware();

M8C_EnableGInt;
// Start an enumeration with the host
 USB_Start(0, USB_5V_OPERATION);

// Wait until the host enables the device
 while (!USB_bGetConfiguration());
 USB_INT_REG |= USB_INT_SOF_MASK;

 while (1) {
 if (SOF_Flag) {
// Arrive here every 1 msec
 SOF_Flag = 0;
 buttons_now = scan_buttons();
 if (buttons_report != buttons_now) {
// If buttons have changed then tell the host
 buttons_report

 USB_TOGGLE);
 }

enumeration

 lights
report from the PC; I then wait for an SOF flag to
be set. The SOF_ISR sets this flag every 1 msec.

nce the SOF flag is set I call scan-buttons(),
hich is a button debouncing routine. If I detect a
utton change then I send a buttons report to the
C [technical sidenote: a USB device does not
ctually “send,” it prepares data that the USB
ost will come and collect; remember that the
ost controls all communications and a device
nly “talks” when the host permits it; the result is
quivalent to a “send”]; I then check to see if a
hts’ report was received in the previous frame

nd, if so, I update my local LEDs. Note that from
AIN’s perspective, data is moved into and out
f endpoint buffers; the USB communications is
andled in the background by the Serial Interface
ngine (SIE); thus, USB run-time operation is as
mple as reading and writing endpoint buffers.

t matter,
ow did the device know that it had to use reports

t
onsume any of the programmable resources so

igure 11 is divided into three sections: device

ll USB devices are required to have a Vendor ID
and a Product ID. The Vendor ID is assigned by
the USB Implementers Forum (at
http://www.usb.org/

Let us return to the PSoC Designer PC and
discover how the device program is working.
Stop the ICE-Cube debugger and switch to the
Application Editor subsystem. Open main.c, it will
look similar to Cod
s

= buttons_now;
 USB_LoadInEP(1, &buttons_report, 1,

// If a lights report has been received
// then update the local display
 lights_report =

USB_INTERFACE_0_OUT_RPT_DATA[0];
 update_LEDs(lights_report);
 }
 }
 }

Code 1. main.c for Example 1

The USB_Start() call initiates the
sequence that is handled by the USB User
Module libraries; I wait for enumeration to be
completed then I post a buffer to receive a

O
w
b
P
a
h
h
o
e
lig
a
M
o
h
E
si

But it can’t be this easy, can it? Well yes and no!
You should be asking, “How did the host and
device know that the buttons and lights reports
were only one byte long? And, for tha
h
at all?” To answer these questions we need to
switch PSoC Designer to the Interconnect View
in the Device Editor subsystem.

This example uses a single user module – the
full-speed USB User Module – and this does no
c
there are still 4 digital blocks and 6 analog blocks
free. At this time you should check the global
resources (I did not use any system clocks in this
example either) and the IO assignments (where
you will see the buttons in and LED out signals).

Now right-click on the USB User Module and
choose “USB Setup Wizard.” Expand all of the
entries so that your view looks similar to Figure
11. These are the USB descriptors that were
discussed in the “USB Essentials” section – their
format is defined by the USB Spec. and we enter
our information to describe what our device is
and does.

F
descriptors, string descriptors and class
descriptors. Strings are optional but I always
include them since they make debugging simpler.
I have defined three strings: my manufacturer
name, the product name and a serial number.
You could edit these strings, if desired.

I shall describe the device descriptors from the
top down. First are device attributes.

A

) and I have entered my ID.
You are welcome to use this for development but,
should you wish to sell a product, then you must
obtain your own Vendor ID. I assigned a Product
ID to identify this example from all of my other
examples. I also chose a device release of 1.00.
The device class and subclass are set to 0 in the
device attributes since I define these in the
interface descriptor. The remaining three entries
are the strings that I have already defined.

A device contains a collection of configurations
and, in this example, I only have one. This is
defined by a configuration descriptor. I declare a
maximum power used by the ButtonsAndLights
device as 100 mA and this will be provided by the
USB cable. This value characterizes the device
as low power and therefore can be attached to
any host socket.

7/11/2005 Revision A - 8 -

AN2298

 Revision A - 9 -

ontains a collection of interfaces
d, in this example, I only have one. USB is a

communications method and the
an support a vast array of

 grouped
OS writers

 the

it involves
vice slightly to fit, since the world

 and painful.

 by the
s

d data

) class for this

 matched
ndLights device. You can think of

river as a “generic byte mover” since its
ll outside the human

low) real-world activities can use the HID driver

se EP0 for data received from the host. I do not

 be simple.

We can specify up to 500 mA, a high-power
device, and still be bus powered but we would
not be able to operate when attached to an un-
powered hub.

A configuration c
an
very flexible
underlying hardware c
diverse devices. As mentioned in the “USB
Essentials” section, the USB develope

r devices into classes and the
rs

simila
provide generic class drivers for most of
defined classes. I always encourage m

rs even if
y clients to

use standard class drive
modifying the de
of custom drivers is expensive

Class drivers are primarily characterized
data transfer requirements of devices. A mas

movestorage class device, for example, needs to
a lot of data reliably but the timing of transfers is

thisnot a concern. Contrast with an audio class
driver that needs to move time synchronize

o data! I chose – here late data is just as bad as n
 (HIDthe Human Interface Device

example sinc
small but reliable transfers)

e its data transfer characteristics
(infrequent,

nsAthe Butto
 dthe HID

application range extends we
 applications involving interface range. Many

(s
and you don’t even need a human interface!

An interface contains a collection of endpoints
and an HID class device is required to have an
interrupt IN endpoint. It can optionally define an
interrupt OUT endpoint but, in this example, I will
u
need to declare this since EP0 is always present.

An HID class device requires a report descriptor
that defines exactly the size and format of the
data exchanges. Look at the report descriptor at
the bottom of Figure 11. It first defines a Vendor
Defined (i.e., custom) usage page, which means
that the operating system will not try to own the
device (Example 2 will fall into this category). I
then include the minimum required report entries
to define a single byte packet (report size = 8
bits, report count = 1, logical min. = -127 and
logical max. = 128) input and a single byte packet
output. During enumeration the host HID driver
will read in the report descriptor and use it to
configure its internal buffers.

In summary, the USB Setup Wizard is used to
define the descriptors for our device. The data
transfer characteristics of the ButtonsAndLights
device indicated that we should be an HID class
device so we defined a report descriptor to
describe the size and format of the data we will
transfer. These tables are statically defined and
enable the USB run-time code to

Figure 11. Descriptors for Example 1

With buttons and lights working, we can now set
our sights on something more interesting.

7/11/2005

AN2298

 Revision A - 10 -

 CY8C24794, it is time to expand

Example 2:
Temperature Sensing Keyboard
Now that we have explored some of the USB
spects of thea

our examples to use some other capability of the
component. This example will operate like a
keyboard although it will not physically look like a
standard keyboard. This is one of the many
benefits of USB: since the communications is
protocol based, the host does not depend upon a
particular physical implementation (above the
USB Spec. -specified data transport), so you can
swap out the device hardware if you discover
something better or cheaper. The major
investment in host software is preserved.

his example will be a temperature sensor using T
VR1 and VR2 as surrogates for real temperature
sensors: they are easily accessible on the
evaluation board and we can simply add jumper
wires as shown in Figure 12.

Note that I connected VR1 and VR2 to the
nearest available IO pins on port 3. This is
another feature of the CY8C24794 that you will
appreciate – almost all of the IO pins are identical
and you can select whichever is closest, easiest
to route, etc. I have completed several
CY8C24794 designs and some have been on
low-cost, single-sided boards thanks to this
flexibility in the IO structure. Note that this routing
did cost me an analog block for a PGA since the
analog mux bus cannot directly drive an ADC

ock. Engineering is full of trade-offs! bl

Figure 12. Jumper Wires Added for Example 2

Rather than develop a custom host application as
we did in Example 1, I wanted to show the benefit
of using software that is already installed on the
host. I have set up descriptors so that this
xample looks like a standae

T

I included the LCD User Module in this example
to display the temperatures locally. This module
does not use any of the programmable
resources, it is just code that will reside in Flash
memory. The LCD library implements all of the
low-level data strobing to the LCD display
mounted on the evaluation board and I will use
the API to simply write to the display.

rd USB keyboard.
his means that this example will run with any

host that supports a USB-aware operating
system, such as Windows (all flavors since
Win98 Gold), OS 9, OS X, Linux, VxWorks, etc.

e need an ADC to read the voltages and I
hose an ADCINC from the available suite of
ser modules. This ADC needs a counter and is
aced as shown in Figure 13. Once triggered,
is ADC measures the selected voltage
dependently so I included a task in the SOF
mer loop to check for completion. The ADC
ubsystem produces two digital values of VR1
nd VR2 every msec.

pen the example2.soc project and select the
evice Editor subsystem. Right-click on the USB
ser Module icon and select the USB Setup
izard. Notice that I changed the report

escriptor to define the device as a keyboard and
am also using EP2. The report descriptor

escribes an 8-byte IN buffer and a 1-byte OUT
uffer as shown in Figure 14; the IN buffer is

similar te that
HID u scan
odes. The OUT buffer is used by the host to

usage
codes in particular, please refer to the references
at the end of this Application Note.

W
c
u
pl
th
in
ti
s
a

Figure 13. User Modules Configured for Example 2

O
D
U
W
d
I
d
b

to the PS2 keyboard packet but no
sage codes are used in place of

c
activate the LEDs on a keyboard. To learn more
about HID devices in general and HID

7/11/2005

AN2298

7/11/2005 Revision A - 11 -

rd. If you are using

he format
hown in Figure 14 to the host. One problem that

I discovered during development is that the
CY8C24794 is a full-speed device and can “type”
much faster than a typical low-speed keyboard so
therefore I had to add code to slow down the
typing speed since Windows was missing
characters. I decided to add two buttons, S1 and
S2, also shown in Figure 12, to initiate the
transfer. And we learnt in Example 1 that these
buttons could be electronic buttons on the host.

When S1 is pressed, the example program reads
the current temperature_1 and types the string
“temp1 is xx” on the host. Similarly, S2 types the
stri C

esigner to the Application Editor subsystem and

DataAvailable()) {
 Voltage[Even] =

ADCINC_bClearFlagGetData();
 DisplayTemperature(Even);
 MUX_CR3 = MUX_CR3 ^ 0xC0;
 ADCINC_GetSamples(1);
 }
 if (!Typing() && Buttons)

StartTyping(Buttons);
 }
 }
}

ode 2. main.c for Example 2

ow press S1 and/or S2 and see the
mperature values input directly to the editor or

preadsheet. Vary VR1 and VR2 and press S1
nd S2 again.

ow connect a jumper wire between P2[7] on
12 and LS1 on J2. On the real keyboard
onnected to the host PC, press the
APS_LOCK key – the buzzer on the evaluation

 host system, it will OR the key-press inputs and

hour. Pretty amazing!

Now what other data would you like to get into
your PC?

he format
hown in Figure 14 to the host. One problem that

I discovered during development is that the
CY8C24794 is a full-speed device and can “type”
much faster than a typical low-speed keyboard so
therefore I had to add code to slow down the
typing speed since Windows was missing
characters. I decided to add two buttons, S1 and
S2, also shown in Figure 12, to initiate the
transfer. And we learnt in Example 1 that these
buttons could be electronic buttons on the host.

When S1 is pressed, the example program reads
the current temperature_1 and types the string
“temp1 is xx” on the host. Similarly, S2 types the
stri C

esigner to the Application Editor subsystem and

DataAvailable()) {
 Voltage[Even] =

ADCINC_bClearFlagGetData();
 DisplayTemperature(Even);
 MUX_CR3 = MUX_CR3 ^ 0xC0;
 ADCINC_GetSamples(1);
 }
 if (!Typing() && Buttons)

StartTyping(Buttons);
 }
 }
}

ode 2. main.c for Example 2

ow press S1 and/or S2 and see the
mperature values input directly to the editor or

preadsheet. Vary VR1 and VR2 and press S1
nd S2 again.

ow connect a jumper wire between P2[7] on
12 and LS1 on J2. On the real keyboard
onnected to the host PC, press the
APS_LOCK key – the buzzer on the evaluation

 host system, it will OR the key-press inputs and

hour. Pretty amazing!

Now what other data would you like to get into
your PC?

Figure 14. Data Format Defined by Report
Descriptor

During enumeration, the host will recognize our
device as a “standard” keyboa
Windows XP or Windows 2000 then these
operating systems will also recognize the device
as a “system input device” and will open it for
exclusive access. This means that an application
program, such as example1.exe, would not be
allowed to open it to gain access to the reports.
Microsoft tells me that allowing this would open
up a security hole so it is not permitted. Please
be aware of this restriction when configuring a
device that the operating system will want to own!

The run-time operation of a keyboard is very
easy; we just send reports using t

ing this would open
up a security hole so it is not permitted. Please
be aware of this restriction when configuring a
device that the operating system will want to own!

The run-time operation of a keyboard is very
easy; we just send reports using t
ss

ng “temp2 is xx.” Please switch PSong “temp2 is xx.” Please switch PSo

DD
look at main.c, this is also repeated in Code 2.

This code is an extension from Example 1 and
uses the same structure. Now switch to the
Debugger subsystem, download the code and
start it running (or program using the mini-
programmer and start it running). While the
enumeration messages are appearing on the
host PC screen, start an editor or spreadsheet
program on the host PC.

look at main.c, this is also repeated in Code 2.

This code is an extension from Example 1 and
uses the same structure. Now switch to the
Debugger subsystem, download the code and
start it running (or program using the mini-
programmer and start it running). While the
enumeration messages are appearing on the
host PC screen, start an editor or spreadsheet
program on the host PC.

void main() {
 init_hardware();
 M8C_EnableGInt;

// Can now start my ADC
 PGA_Start(3);
 ADCINC_Start(3);
 ADCINC_GetSamples(1);
 LCD_Start();
 init_display();
/ Connect to the host

void main() {
 init_hardware();
 M8C_EnableGInt;

// Can now start my ADC
 PGA_Start(3);
 ADCINC_Start(3);
 ADCINC_GetSamples(1);
 LCD_Start();
 init_display();
/ Connect to the host //
 USB_Start(0,USB_5V_OPERATION);

// Wait to be enumerated
 while (!USB_bGetConfiguration());
 USB_INT_REG |= USB_INT_SOF_MASK;
 ADCINC_GetSamples(1);

 while(1) {
 if (SOF_Flag) {
 SOF_Flag = 0;
 Even ^= 1;
 Buttons = scan_buttons();

 if (ADCINC_fIs

 USB_Start(0,USB_5V_OPERATION);

// Wait to be enumerated
 while (!USB_bGetConfiguration());
 USB_INT_REG |= USB_INT_SOF_MASK;
 ADCINC_GetSamples(1);

 while(1) {
 if (SOF_Flag) {
 SOF_Flag = 0;
 Even ^= 1;
 Buttons = scan_buttons();

 if (ADCINC_fIs

CC

NN
tete
ss
aa

NN
JJ
cc
C
board
C
board will turn on. Press it again to turn it off!
When multiple USB keyboards are connected to

will turn on. Press it again to turn it off!
When multiple USB keyboards are connected to
aa
will AND the LED outputs; so the OS sends an
LED OUT report to both keyboards: I interpret the
CAPS_LOCK LED as “turn buzzer on.” It took
just 3 lines of code to add this feature: open
adcincint.asm and search for CAPS_LOCK, it is
in the ADC interrupt service routine. We were
fortunate that this routine executes at about a 2
kHz rate, which is the nominal frequency of the
buzzer. I check to see if the CAPS_LOCK LED is
on and use this to activate the buzzer. Had this
frequency not been available, we could have
created it with a Timer User Module.

We have used standard building blocks to
construct a simple data logger in less than an

will AND the LED outputs; so the OS sends an
LED OUT report to both keyboards: I interpret the
CAPS_LOCK LED as “turn buzzer on.” It took
just 3 lines of code to add this feature: open
adcincint.asm and search for CAPS_LOCK, it is
in the ADC interrupt service routine. We were
fortunate that this routine executes at about a 2
kHz rate, which is the nominal frequency of the
buzzer. I check to see if the CAPS_LOCK LED is
on and use this to activate the buzzer. Had this
frequency not been available, we could have
created it with a Timer User Module.

We have used standard building blocks to
construct a simple data logger in less than an

Reserved

HID - Usage.
Can handle
up to 6

LED

Modifier Bits
inShift, ALT, Ctrl, W

6 “Key Codes”
HID -
roll-over.

LEDOUT Report

IN Report

AN2298

 - 12 -

xample 3: Process Mo
e first two example

dding USB to a PSoC project is s
 this example, we will implement a configurable
rocess monitoring system: the device will collect
nalog data at a rate determined e
ost will then display this data in a graph, and will
e able to save and reload data s sign
ill be simple and expandable
xample is completed, I will offer suggestions to
xtend it in multiple directions.

starts with the human interface on
re 15 shows the starting point for

is example.

This rom
the device at a rate by the rate slider
n the host. The fastest rate will be 1 msec and

r PC, open example3.soc
bsystem, right-click on the

n and select the USB Setup
xample uses different

(when compared with
 much faster but still

 of main.c is also similar

“collect
e of the

 how many
hen providing data.

ice endpoint at a 1-msec
nterval’ in the endpoint

not
 the

C device
ple3.exe on

“Get
Now h the
ing recorded. You can also set the

and click “Continuous” but, with VR1
ee a slowly varying

Interfa

E nitoring
I

 Revision A

trust that th s have shown that
a traightforward.
In
p
a by the host, th
h
b ets. The de
w and, when the
e
e

This design
he host. Figut
th

 example will collect 256 8-bit samples f
 determined

o
the slowest will be 256 msec so that we can
collect a wide variety of analog samples; the
example will use VR1 but, once you understand
how the example works, you will be able to use
the output of any PSoC block.

To meet this specification we need only transfer a
single byte in either direction every USB frame
(similar to Example 1), so I chose an HID class
interface for this example also. I did, however,
specify two data endpoints to ease the later
expansion of this design.

On the PSoC Designe
uin the Device Editor s

SB User Module icoU
Wizard. Note that this e
endpoint parameters
Example 1); the data rate is

on of what the CY8C24794 is only a small fracti
capable of. The structure
to Example 1 and is shown in Code 3.

Code 3 shows that main.c waits for a

alusamples” signal from the host; the v
the devicecollect samples signal tells

hould skip wframes that it s
The host will poll the dev
rate (see the value of ‘i
descriptor) and the device will NAK (Negative
AKnowledgement) this request if data is

pplies data atavailable. Thus, the device su
rate requested by the host.

Start running the program on the

 the companion exam
PSo

and then start
the host PC. Set the rate to slow and click

vary VR1 and watcSamples.”
 bewaveform

high rate to
as the source, you will just s
horizontal line.

Figure 15. Human ce for Example 3

7/11/2005

AN2298

on());
USB_INT_REG |= USB_INT_SOF_MASK;

while(1) {

ata

// Finished with these samples, restart
 OutReport = 0;
 init_display();

 }
 }
 }

/ Did I receive a command?
 if (USB_bGetEPAckState(4)) {
 Count = USB_bReadOutEP(4,

&OutReport, 1);
/ Setup to supply the samples
 SampleCount = 255;
 SkipCount = OutReport;

/ Wait for another command
 USB_EnableOutEP(4);
 }
 }
 }
}

ode 3. main.c of Example 3

ou can also save the collected waveform using
e “Save” button and reload and display a saved
aveform using the “Load” button. The host
pplication program is quite small and the source
ode is provided on the CD-ROM that
ccompanies this Application Note.

 samples
mediately after receiving a trigger command

same time. The HID
ass can transfer one interrupt packet every

enable a rate of 1MB/sec and a
ulk data transfer would enable a rate of
96KB/sec – so there is a lot of headroom for
xpansion. Isochronous and bulk transfers will
quire the use of a different class driver, which
ill be the subject of a future Application Note.

Summary
For those of you who thought that building a USB
device was difficult, I must point out that you
have built three of them while following along with
this Application Note! And it was reasonably
straightforward, wouldn’t you agree?

We have not, by any means, covered all aspects
of USB or explored the full capabilities of the
CY8C24794, but we have made a good start!
Many USB devices can be built using the HID
class framework and even more can be built
using other class drivers: these will be the subject
of future Application Notes but, for now, enjoy
experimenting with these very capable tools.

I hope that my examples have started you
thinking of other devices that you could create.

void main() {
 init_hardware();
 M8C_EnableGInt;

// Can now start my ADC
 PGA_Start(3);
 ADCINC_Start(3);
 ADCINC_GetSamples(1);
 LCD_Start();
 init_display();
// Connect to the host
 USB_Start(0,USB_5V_OPERATION);

// Wait to be enumerated

while (!USB_bGetConfigurati

 ADCINC_GetSamples(1);
// Post a buffer to wait for a command
 USB_EnableOutEP(4);

 if (SOF_Flag) {
 SOF_Flag = 0;
 if (ADCINC_fIsDataAvailable()) {

Voltage =
ADCINC_bClearFlagGetData();

 DisplayTemperature();
 ADCINC_GetSamples(1);
 }
// Am I supplying data
 if (OutReport) {
/ Have I finished supplying d/
 if (--SkipCount == 0) {
 SkipCount = OutReport;
 if (SampleCount--) {
// Send another sample
 DisplaySampleCount();
 USB_LoadInEP(3, &Voltage, 1,

USB_TOGGLE);
 }
 else {

/

/

/

C

Y
th
w
a
c
a

Project Expansion
This example is impressive at the high-data rate
but is still only using about 2% of the capability of
the CY8C24794. We can simply extend the
application range while staying within the HID
class or we can dramatically extend the range by
using a different class driver.

The current firmware takes its 256
im
from the host. The firmware could treat this as an
“arm” function and use an external signal to start
data collection; this would be useful for transient
analysis.

The CY8C24794 can use a 64-byte endpoint
buffer to send data to the host. The device could
take more samples within the 1-msec frame; it
could take wider samples; or it could monitor
several waveforms at the
cl
frame so with a 64-byte packet on a full-speed
bus, we could be transferring 64KB/sec into the
PC using this example program.

If we wanted an even higher data rate then we
could use isochronous (i.e., time dependent) or
bulk data transfers. A full-speed isochronous data
transfer would
b
8
e
re
w

7/11/2005 Revision A - 13 -

AN2298

USB I would recommend
ple, by myself

n Axelson. I prefer mine
n’s style. If possible, you

SB Specification and all
developers’

org/

References
t To learn more abou

two books: USB Design By Exam
 By Jaand USB Complete

but you may prefer Ja
should get both of them.

You can download the U
of the Class documents from the
section at http://www.usb. . They are a free

ifications

otes on
everal of which would

n to a PC.

r

ooks. He was also

am sure!

download but, be warned, they are spec
and not easy to read.

There are also many PSo

ypress web site, s
C Application N

the C
benefit from a connectio

Happy developing!

About the Autho
Name: John Hyde

Title: Design Consultant
Background: John has been involved with

USB since its inception and has
written several “USB Design By
Example” b
an early adopter of PSoC
technology and was delighted
when Cypress offered a single
product with both of his favorite
technologies. This introduction
article will be the first of many, I

Contact: john@USB-By-Example.com

 Cypress Semiconductor

Fax: 425.787.4641
http://www.cypres .com/

2700 162nd Street SW, Building D
Lynnwood, WA 98037
Phone: 800.669.0557

s
Copyright © 2005 John Hyde, USB Design By Example. All rights reserved. Licensed to Cypress Semiconductor Corp.

"Programmable System-on-Chip," PSoC, PSoC Designer and PSoC xpress are trademarks of Cypress Semiconductor Corp.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.

The information contained herein is subject to change without notice. Made in the U.S.A.

 E

7/11/2005 Revision A - 14 -

	Application Note
	AN2298
	PSoC™-Based USB Device Design By Example
	Introduction
	CY8C24794 Overview
	Evaluation Board
	USB Essentials
	Example 1: Buttons and Lights
	Example 2:
	Temperature Sensing Keyboard
	Example 3: Process Monitoring
	Summary
	References
	About the Author

