
USB Multi-Role Device
Design By Example

John Hyde
U

S
B

 M
ulti-R

ole D
evice D

esign B
y E

xam
ple John H

ydePrinted by Cypress Semiconductor Corporation
Connecting From Last Mile to First MileTM

www.cypress.com

USB Multi-Role Device Design By Example

John Hyde

(Commissioned by Cypress Semiconductor)

 iii

USB Multi-Role Device Design By Example

John Hyde

Foreword by Brian Booker

 We were pleased to get John Hyde to write this book on
Cypress Semiconductor’s behalf. It should be considered a
supplement to his “USB Design By Example” in the same
way that the OTG Supplement complements the USB 2.0
Specification. Only the new elements of multi-role device
design are covered since these build on the established
base defined by the USB specification.
 Cypress Semiconductor supports all facets of USB
design and has products covering the breadth and depth of
possible USB solutions. The two products described in this
book, the CY7C67200 EZ-OTG Host/Peripheral Controller
and the CY7C67300 EZ-Host Host/Peripheral Controller will
enable new designs particularly in the portable applications
arena. This book, with the support of other Cypress
documentation, should get your USB product idea rapidly
into development and then into the prototype stages. We at
Cypress Semiconductor are dedicated to supporting your
design efforts through production and 24 hour support is
available at www.cypress.com.

iv

Acknowledgements:

I would like to thank Cypress Semiconductor for providing
me with an opportunity to write about these two remarkable
components. The EZ-Host and EZ-OTG include features
that enabled me to solve a much wider range of customer
projects. I particularly like the small size of the EZ-OTG
since it enables USB to be used in many more solutions.

I could not have completed this book without the expert help
of Cypress’s Systems Engineering Team in Boise. I must
particularly thank Rick Pennington, DeVerl Stokes, Ray
Asbury, James Cahoon and Steven Connelly for their time,
teaching and impressive development platform including
three boards, Frameworks code and several design
examples. Additionally, Simon Nguyen provided a wealth of
information about the internal operation of the components,
and his in-depth answers to all of my questions enabled
better descriptions in the text. Several of Cypress’s
applications engineers, especially Glenn Roberts, Matt
Leptich and Troy Gentry, provided valuable feedback during
the review process and this also helped improve the quality
and accuracy of the book.

I had a lot of fun writing this book and I trust that you will
enjoy reading it. You will also have fun using these two new
components from Cypress Semiconductor to create new and
exciting USB solutions.

All Text and figures copyright © 2003 by John Hyde

 v

Table of Contents

Table of Contents..v
List of Figures.. vii
Chapter 1: Expanding the USB Applications Range... 1

Original USB Design Intent... 1
Host Role Responsibilities.. 3
Ease of Use .. 5
Dual Role Device Implementation .. 6
Transforming into a host... 8
Chapter Summary .. 11

Chapter 2: Getting to know EZ-Host and EZ-OTG .. 13
Hardware features .. 13
Central Processing Unit.. 14
Memory Expansion Capability .. 15
Additional EZ-Host Capability... 15
Integrated Timers ... 16
Power Management ... 16
USB Capabilities... 17
Parallel IO ... 18
Serial IO.. 19
IO Summary ... 19
Firmware Features ... 21
BIOS Operation .. 22
BIOS Memory Management ... 23
BIOS Idle Task ... 25
BIOS Scan Operation ... 26
Other BIOS functions.. 28
Chapter Summary .. 28

Chapter 3: EZ-Host/EZ-OTG Development Environment... 29
CY16 Firmware Architecture .. 31
Frameworks Subsystem ... 33
Simple Example #1 - Hello World... 33
Target System .. 34
Simple Example #2 – Using Scan Records.. 38
Simple Example #3 – Buttons and Lights Device .. 39
Simple Example #4 – BAL Host Program .. 44
Simple Example #5 – Standalone BAL Device .. 46
Chapter Summary .. 46

Chapter 4: Developing a host application ... 47
Key Host Controller Concepts .. 47
Frameworks Host Controller Implementation ... 50
Device Identification ... 55
Simple Example #6 – Buttons and Lights Host .. 56

vi

Chapter Summary...60
Chapter 5: Concurrent operation as a host and device...61

Simple Example #7 – Concurrent BAL Host and Device..63
Simple Example #8 – Using Scan Records 2 ...69
Smart USB Devices ..71
Data Acquisition Example ...73
Video Black Box Example...76
Chapter Summary...77

Chapter 6: Designing a dual-role device ...79
New dual-role concepts ..80
Simple Example #9 - Dual-role Buttons and Lights Device80
Simple Example #10 – Standalone Dual-role Buttons and Lights Device89
OTG behind-the-scenes..92
Session Request Protocol...95
Chapter Summary...97

Chapter 7: Using EZ-Host/EZ-OTG in coprocessor mode as a USB host controller 99
USB Host Controller Driver ...104
Low-level Communications Driver ..106
Link Control Protocol...107
Root hub functionality..108
Testing our host controller ..108
Chapter Summary...111

 vii

List of Figures

Figure 1-1. Standard USB terminology ... 2
Figure 1-2. Basic host to device connection ... 3
Figure 1-3. Products that misuse USB as a power supply ... 4
Figure 1-4. PC host with two devices.. 6
Figure 1-5. Embedded host and one device ... 6
Figure 1-6. Mini-AB and standard-B connectors... 7
Figure 1-7. Mini-A plug and Mini-B plug insert into a Mini-AB connector 8
Figure 1-8. Interconnection of two dual-role device cameras..................................... 9
Figure 1-9. Default Bias resistor connections ... 10
Figure 1-10. New OTG Descriptor .. 11
Figure 2-1. Block diagram of EZ-Host and EZ-OTG components 13
Figure 2-2. All registers, except PC, are memory-mapped....................................... 14
Figure 2-3. Hardware assigned memory map... 15
Figure 2-4. An integrated power booster is used for battery-powered applications 16
Figure 2-5. An integrated charge pump is used for battery-powered applications ... 17
Figure 2-6. EZ-Host/EZ-OTG components support several USB configurations 18
Figure 2-7. EZ-Host/EZ-OTG support a coprocessor mode..................................... 18
Figure 2-8. EZ-Host and EZ-OTG IO functionality. ... 20
Figure 2-9. Interrupt Service Routines are accessed via a table in RAM 21
Figure 2-10. Changing or enhancing BIOS operation... 22
Figure 2-11. BIOS assigned memory map.. 23
Figure 2-12. Typical Memory Allocation Blocks in use .. 24
Figure 2-13. The BIOS Idle Loop .. 25
Figure 2-14. Adding a new task to the Idle Chain... 25
Figure 2-15. Detail of scan records in EEPROM .. 26
Figure 2-16. SCAN has 10 defined Op Codes.. 27
Figure 3-1. Development kit includes an SBC and 2 mezzanine boards 29
Figure 3-2. Simplified view of CY16 Development Environment 30
Figure 3-3. CY16 firmware is layered and is task based .. 32
Figure 3-4. Our first example application program ... 34
Figure 3-5. Key features of a mezzanine board.. 35
Figure 3-6. Firmware development uses multiple windows 37
Figure 3-7. Using scan records to modify BIOS operation 38
Figure 3-8. Structure of our first USB Device Example .. 40
Figure 3-9. Example 3 Descriptors ... 41
Figure 3-10. Operation of BIOS is changed by replacing pointers 42
Figure 3-11. The CallBack routines needed for Example 3 44
Figure 3-12. Using two PCs to test Example 3 ... 45
Figure 3-13. Display from Target PC “Buttons and Lights” program 46
Figure 4-1. A re-programmable host and an embedded host have similar structure 48
Figure 4-2. Variable Data uses pre-allocated, fixed-format buffers. 51
Figure 4-3. Format of a Frameworks Device Object ... 52

viii

Figure 4-4. Format of a Frameworks USB Request Block (URB)52
Figure 4-5. Format of EZ-Host/EZ-OTG Transfer Descriptor53
Figure 4-6. Scheduling Transfers in a frame ...54
Figure 4-7. Ap_driver is described by a Class_Driver structure................................55
Figure 4-8. Structure of Ap_driver code ..56
Figure 4-9. Host application code for simple example #6 ...59
Figure 4-10. Testing the se6 host example ...60
Figure 5-1. Concurrent operation as a host and as a device61
Figure 5-2. Buttons and Lights example with two hosts and two devices62
Figure 5-3. Host+Device Application Program ..69
Figure 5-4. se8 used to modify BIOS operation ..69
Figure 5-5. Hardware staged for debug...70
Figure 5-6. EZ-Host/EZ-OTG is a very smart USB device72
Figure 5-7. Example of a smart USB device: data acquisition and control73
Figure 5-8. Data acquisition and control example ...75
Figure 5-9. Smart USB device: video black box using standard USB camera76
Figure 6-1. Overview of dual-role example ...79
Figure 6-2. Dual-role “buttons and lights” example. ..89
Figure 6-3. Hardware used to debug the dual-role example.....................................90
Figure 6-4. Simplified dual-role device OTG state machine......................................92
Figure 6-5. Default dual-role device connection...93
Figure 6-6. State transitions from power-on ..94
Figure 6-7. State transitions with B-device initiating SRP signaling..........................97
Figure 7-1. Linux is implemented in layers ..100
Figure 7-2. StrongARM co-processor development board......................................101
Figure 7-3. Block diagram of StrongArm coprocessor platform102
Figure 7-4. The flash memory operates as a disk drive. ...103
Figure 7-5. Starting Linux kernel implementation..103
Figure 7-6. Structure of EZ-Host/EZ-OTG host controller driver.104
Figure 7-7. Host controller driver processes lists ..105
Figure 7-8. HPI hardware detail...106
Figure 7-9. Base LCP Commands...107
Figure 7-10. Linux configuration for coprocessor example.108
Figure 7-11. Hardware ready to test coprocessor example109

 Chapter 1: Expanding the USB Applications Range

 1

Chapter 1: Expanding the USB Applications Range

 USB has come a long way since its inception as a desktop PC expansion
bus in 1995. The USB Specification defines a master-slave communications system
and details two distinct roles – a host that is in control of all communications and a
function that provides services to the host. Initial implementations partitioned these
roles into individual silicon components. The recent “On-The-Go” (OTG) Supplement
extends the original usage model for USB by adding the capability to build a dual-role
device. Cypress Semiconductor has gone one step further with their EZ-Host and
EZ-OTG components that integrate up to four hosts and two functions into a single
component. These multi-role devices are fully programmable and enable a wider
range of USB-solutions to be developed.

 It is time to revisit the original USB specification, the additions made with
USB 2.0 and the OTG Supplement, to fully understand the requirements of a “host”
and a “function”. This introduction distills this information into the essential elements
that you need to understand in order to make rapid progress on multi-role device
designs. Even if you consider yourself as “USB-savvy” I would recommend reading
this introduction since it contains key definitions that will make the remainder of the
book easier to follow.

Original USB Design Intent
 USB was originally conceived as a desktop PC expansion bus. The external
IO connectivity of the mid-1990’s PC was based on serial ports and parallel ports –
these interfaces used different connectors (which were physically large) and only
offered point-to-point connections to peripherals. Various schemes were proposed
so that devices could be daisy-chained on parallel ports but these did not receive
wide adoption. There were also new peripherals, such as the telephone, that needed
to be attached to the PC and needed additional capabilities that the serial and
parallel ports could not provide.

 USB was introduced in 1996 as a single-connector, protocol-based, serial
bus to address the requirements of PC peripheral expansion. It supported two
speeds, low at 1.5Mb/s and full at 12Mb/sec, suitable for many desktop PC
expansion peripherals. Capabilities such as hot-insertion, support of isochronous
(time-dependant information such as digital audio) data and a unified operating
system driver model were also included. Also, for the first time, power was defined at
the connector so that a peripheral device could officially consume current from the
PC’s power supply. Figure 1-1 shows the major elements defined by the first USB
specification.

USB Multi-Role Device Design By Example

2

PC Host

IO Device

Hub

Upstream

Downstream

USB cables to other devices

PC Host

IO Device

Hub

Upstream

Downstream

USB cables to other devices
Figure 1-1. Standard USB terminology

 It is important to emphasize that USB is a Master/Slave bus; it is defined to
have one master and many slaves. The motivation behind this decision was lower
system cost; this decision puts all of the complexity in the PC host since this is only
implemented once. This enables the devices to be simple, therefore low cost. This
implementation defines the two roles that exist in a USB environment: the host role
that controls the communications and the function role that provides services to the
host. A function may be a hub that is responsible for propagating USB signaling and
power, or a device that is the target for USB data communications. In this context, a
multi-role device can operate as one or more hosts and one or more devices —
either independently or simultaneously. A multi-role device will typically not have the
signal propagation properties of a hub, but later chapters will show that this crisp
distinction is also becoming hazy.

 In April 2000 a third speed of 480 Mb/sec was added in the USB 2.0
specification. The “PC expansion bus” usage model did not change, and the higher
speed enabled high bandwidth peripherals such as mass storage devices and high
frame rate video cameras.

 The “OTG Supplement” to the USB 2.0 specification was approved in
December 2001, and it extended the “PC expansion bus” usage model to essentially
allow “peripheral devices to talk to each other without a PC.” The USB protocol
requires a host to communicate to a device; therefore one of the peripherals must
assume the role of a host in order to enable this communication. Until this
supplement was approved, a host had always been a PC – with this premise come
many assumptions that need to be understood if we want a battery-powered, non-
programmable, embedded system such as a digital still camera to become a USB
host.

 Chapter 1: Expanding the USB Applications Range

 3

 So lets look deep inside the USB specification to understand the
responsibilities of a USB host. Our goal is to discover the essential requirements of a
“minimal-host” – something that can effectively communicate and exchange data with
a standard USB peripheral.

Host Role Responsibilities
 The most important task for a USB host (and, for that matter, a USB device)
is to manage and keep system power to a minimum. Data communication is a
secondary task, and both must be done with the over-riding philosophy being ease-
of-use. Figure 1-2 shows a simplified diagram of a USB device about to be
connected to a USB host. The diagram shows a low/full speed connection – a high-
speed connection also starts this way but the biasing resistors are later disabled
during the speed negotiation phase.

Device
Controller

Host
Controller

1K5

15K

15K

Dual Biasing
Resistors

Biasing Resistor

USB Cable

Host Device

Vbus
D +
D -

Gnd

Vbus
D +
D -

Gnd

Series A
Connector

Series B
Connector

Current
Limiter

Figure 1-2. Basic host to device connection

 A host is required to make 100mA available for a device during attachment to
the bus. The device is required to signal its presence to the host, by attaching it’s
biasing resistor to D+ or D-, within 100msec of first consuming power from the bus.
Note that if the device does not signal within 100msec then the host is not obligated
to continue to supply power, and it may limit or disable current flow. Currently no PC
hosts enforce this specification rule so using USB as 5volt, 100mA power supply has
spawned products such as the USB desklamp and USB fan as shown in Figure 1-3.
One day these non-compliant, USB products will only work for 100 msec…

USB Multi-Role Device Design By Example

4

Figure 1-3. Products that misuse USB as a power supply

 Devices use up to 100mA during enumeration and may then request up to
500mA for operation. Providing 0.5 watts or 2.5 watts of power is not a problem for a
PC host that is plugged into a main power source, but these values are large for a
laptop PC and VERY large for a camera that may want to be a host. Lets study what
is REALLY required.

 Look again at Figure 1-2. The device is not required to consume up to
100mA from the host. If the device had its own power source (in USB specification
terms, it is self-powered), either its own main power connection or batteries, then it
could enumerate without consuming any power from the host. The device would use
the presence of Vbus to know that it was attached to a host and would therefore
signal its presence by attaching its biasing resistor.

 The idea that a battery-powered host can enumerate a battery-powered
device is looking promising. A host does not need to power the other device. Since
the target application range of multi-role devices is portable equipment, then it looks
as if we have the makings of a solution. More engineering is required to ensure
reliable operation and interoperability with all USB devices. The details of Vbus
detection and sequencing are discussed later in this chapter.

 The host is also responsible for initiating all communications. USB uses pre-
formatted packets to exchange data between a host and a device. The host is
required to broadcast Start-Of-Frame (SOF) packets every millisecond (accurate to
500ppm). The host then sends addressed packets to targeted devices to read and
write data. For a detailed description of this process refer to my “USB Design By

 Chapter 1: Expanding the USB Applications Range

 5

Example”. The data transfer operation of a dual-role device follows the USB
specification exactly.
 The host is responsible for detecting that a new device has been attached to
USB and, as part of the enumeration process, it must assign a unique address to this
new device. The host then reads the device descriptors to discover the identity of the
newly attached device, and it uses this information to assign and activate a device
driver. The device driver completes the enumeration by enabling the new device with
a Set_Configuration command.

 A PC host will have a vast collection of device drivers available to support
whatever USB device is attached. An embedded host is likely to support only a few
devices - typically only a few devices are relevant to a particular embedded host.
The OTG Supplement calls this a Targeted Peripheral List and enables an embedded
host to support a known collection of devices without needing a hard drive full of
device drivers.

 So, the USB specification does not require that you use a PC as a host. We
can define a “limited capability” host that has features suitable for an embedded
system. The next section looks at the dual-role device as defined by the OTG
Supplement and discusses the features added on top of the base requirements.

Ease of Use
 Any extension or supplement to an existing standard must be done in a
compatible and user-friendly way such that the inherent goodness of the standard is
not compromised in any way. There were many opportunities for the OTG
Supplement to diverge from the base USB Specification, so I must applaud the
specification engineers for pre-solving every detail and enhancing the overall
goodness of USB with OTG.

 Much of the “goodness” of USB stems from its ease-of-use. The user's view
of USB is effortless plug-and-play. But ease-of-use is a double-edged sword – it
requires MORE effort and diligence on the product designer’s part. We must design-
in ease-of-use, and we shall see that the OTG Supplement requires it.

 The system setup shown in Figure 1-4 is used as a vehicle to describe the
details of a dual-role device. A digital still camera and a printer are connected via two
USB ports to a PC. In Figure 1-5 the PC has been removed and the camera is
connected directly to the printer. How is the design of a dual-role camera different
from a device-only camera?

USB Multi-Role Device Design By Example

6

Upstream

Upstream

Upstream

Upstream

Figure 1-4. PC host with two devices

Upstream

Upstream

Upstream

Upstream

Figure 1-5. Embedded host and one device

Dual Role Device Implementation
 First and foremost, a dual-role device is required to operate as a standard
USB device. In this device role, the camera is attached via a USB cable to the PC;
this cable has its upstream, or A, connector plugged into the PC host and its
downstream, or B, connector plugged into the camera. A camera will likely use a

 Chapter 1: Expanding the USB Applications Range

 7

Mini-B connector rather than a standard B connector due to its much smaller size.
The Mini-B connector was added to the USB specification in October 2000. Let us
assume, for the moment, that the printer uses a standard B connector – we will
consider the case where it uses a mini connector later. A dual-role device will use a
Mini-AB connector as shown in Figure 1-6.

Figure 1-6. Mini-AB and standard-B connectors.

There is an extra pin in the Mini-AB connector, called ID, but there is not an

extra wire in the cable. A Mini-AB connector can accept a Mini-A plug or a Mini-B
plug shown in Figure 1-7. The ID pin of a Mini-A plug is connected to ground while
the ID pin of a Mini-B plug is left floating. A dual-role device will implement a pull-up
resistor on the ID pin so that it can detect the voltage level and therefore determine if
a Mini-A or a Mini-B plug is installed.

USB Multi-Role Device Design By Example

8

Figure 1-7. Mini-A plug and Mini-B plug insert into a Mini-AB connector

 Removing the PC from Figure 1-4 left two A-connectors exposed. To
connect the camera to the printer, as shown in Figure 1-5, you would use a Standard
A-to-Mini-A adaptor on the printer cable or replace both cables with a Standard-B-to-
Mini-A cable. In either case, a Mini-A connector plugged into the camera alerts it to
transform itself from a role as a device into a role as a host.

 During the cable swap the printer will have detected loss of Vbus and has
therefore moved into an “unattached” state and is waiting for “the host to turn on
again”, i.e. waiting for a valid voltage on Vbus. Let us also assume that the printer is
a self-powered device (I haven’t come across one that isn’t) and therefore will not
require any significant power from Vbus.

Transforming into a host
 The act of changing the cables interconnecting the peripherals alerted the
camera of its role change from device to host. Since the camera has the A-connector
it is also called the A-device. The device with a B-connector is called the B-device.
Realizing that many dual-role devices would be battery powered, the camera does
not assume its host role immediately – some user action is required to start the
process. Why have the connection powered up and actively consuming precious
battery power if no communication is taking place?

 Chapter 1: Expanding the USB Applications Range

 9

 When the camera is ready for action it drives a valid voltage on Vbus, and
this is recognized by the B-device (printer). The camera enumerates the printer to
ensure it can support it, transfers the picture that needs to be printed and then
suspends the bus and removes Vbus.

 But what if the B-device wanted to request some service from the host – how
can it signal the A-device/host with no Vbus? The OTG Supplement authors added
the concept of a session. When the connection is not being used it is in a power
saving or dormant state. A Session Request Protocol (SRP) is defined in a way that
allows the B-device to request the A-device/host to turn on Vbus to initiate a session.
The OTG supplement defines two methods that the B-device can use to signal the A-
device; one pulses a data line while the other pulses the Vbus line. An A-device
must be designed to accept at least one of these methods and B-devices should be
designed to use both methods. An example of the SRP is detailed in Chapter 6.

A host is required to be able to supply 8mA. A battery-powered host can
supply 8mA far more easily than supplying 100mA. You may design a dual-role
device that supports greater than the minimum of 8mA as required by the
specification – this will allow the dual-role device to support low-power, bus powered
devices such as some mice and keyboards.

 Well, the easy case of a single dual-role device and a USB peripheral was
pretty straight forward. Figure 1-8 shows a more complex situation where the printer
has been replaced by another camera. You want to exchange some photos between
your camera and a friend’s camera. Both cameras are dual-role devices and will
therefore have Mini-AB connectors.

Figure 1-8. Interconnection of two dual-role device cameras

USB Multi-Role Device Design By Example

10

 Since we are USB design engineers we will know to plug the A-end of the
interconnecting cable into our camera and the B-end into our friend's camera. But
we cannot expect a consumer to know this. The A-end and B-end look different
(shown in Figure 1-7), but this subtlety will be missed by most consumers. The cable
does fit the opposite way around so, on average, we can assume that 50% of users
will plug the B end into “our” camera and the A-end into “our friend's” camera. This
makes our camera the device and our friend’s camera the host.

 But we need our camera to be the host since we don’t want to be pushing
unknown buttons on our friend’s camera to make the transfer. We could flash some
error light and/or buzzer and force the consumer to study Chapter 6, Subsection 19
Paragraph 14 of the camera user manual to discover that they should reverse the
cable, OR we could electronically switch the cable for them. I would recommend the
second option. The OTG Supplement authors included a Host Negotiation Protocol
(HNP) which allows the two dual-role devices to interchange roles.

 The A-end of the cable establishes the default-host, and the B-end of the
cable establishes the default-device. The HNP, like the SRP, is delightfully simple
and only involves the switching on and off the biasing resistors. At the start of the
sequence the A-host will be driving Vbus and will have a pull-down resistor on the
data lines as shown in Figure 1-9.

USB Cable

Mini-A
Plug

Mini-B
Plug

Vbus
D +
D –
ID

Gnd

Dual-Role
Controller

1K5

15K

15K

15K

Vbus
D +
D –
ID

Gnd

Dual-Role
Controller

1K5
15K

15K

15K

Dual-role device with Mini-AB connector Dual-role device with Mini-AB connector

Note connection

 Default Device A Default Device B

Figure 1-9. Default Bias resistor connections

 The default-host (our friend’s camera in this example) will have enumerated
the default device (our camera) and discovered that it was a dual-role device. Since
the default-host doesn’t need to use the USB connection it signals to the default-
device that it can use the bus if it needs to, and then it suspends the bus. This

 Chapter 1: Expanding the USB Applications Range

 11

mechanism uses a standard USB descriptor and a standard USB command. A new
OTG descriptor, shown in Figure 1-10, is defined, and the host uses a Set_Feature
command to enable HNP operation. This is the same mechanism as Set_Feature
(WakeUpEnable) so no new theory need be learned here.

Offset Field Value Description
0 bLength Number Descriptor size = 3
1 bDescriptorType Constant OTG Type = 9
2 bmAttributes Bitmap OTG Device Characteristics

b7..b2: reserved (0)
b1: HNP supported 1

b0: SRP supported 2
(1) True if device supports HNP. If true, SRP must also be true.
(2) Not used by A-Device during normal operation; used during compliance testing to

automatically detect B-Device capabilities

Figure 1-10. New OTG Descriptor

 The default-device detects the idle state on the bus and removes its pull-up
resistor. The default-host detects this SE0 state on the bus and turns on its pull-up
resistor to signal its ability to be a device. The default-device detects this pull-up and
assumes the role of host by driving a reset onto the bus. This sequence is described
in more detail in Chapter 6.

 We have electronically “swapped the cable” and our camera is now the host.
This was done in less than 100msec and this operation is unknown, as it should be,
to the consumer. They inserted the cable “backwards” so we swapped it for them. It
was increased design complexity, but this resulted in vastly improved ease of use –
well worth the effort.

 Notice that in all of the system hardware diagrams that included dual-role
devices, a hub was not included. This was deliberate. A hub is not required to
propagate the changing dc voltage levels defined by SRP and HNP. If a dual-role
device detects that a hub is connected downstream of the Mini-AB connector, then it
is not permitted to use SRP or HNP signaling. It is assumed that dual-role devices
will be directly connected to other USB devices or other dual-role devices.

Chapter Summary
 Careful study of the USB specification reveals the ability to build a “limited
capability” USB host. This host need not provide 500mA or even 100mA of power to
a device which is self powered. It is required to supply 8mA. This host need not
support every available USB device but should provide a Targeted Peripheral List of

USB Multi-Role Device Design By Example

12

the devices that it does support. The functionality of a limited host can be combined
with a standard USB device to create a dual-role device.

 The OTG Supplement defines the responsibilities of a dual-role device and
specifies two protocols, the Host Negotiation Protocol and the Session Request
Protocol, which propagate USB’s Ease-Of-Use image. The OTG Supplement adds
one additional descriptor that is processed using standard USB methods.

 The OTG Supplement is elegant in its simplicity. The next chapter will
describe silicon that implements this supplement in two capable components, the EZ-
Host and the EZ-OTG.

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 13

Chapter 2: Getting to know EZ-Host and EZ-OTG

 This chapter introduces the hardware and firmware aspects of the EZ-Host
(CY7C67300) and the EZ-OTG (CY7C67200) components. You will discover that
both parts have ample features that can address all of the issues raised in Chapter 1.
Almost all of the hardware and firmware capabilities are configurable to suit many
different product implementations, and you are not expected to use every feature in a
single application. The firmware development environment uses a fully-configurable
GNU tool set hosted on a Windows platform; most developers will only use these
tools. The development environment is covered in the next chapter.

Hardware features
 Figure 2-1 shows a block diagram of the EZ-Host and EZ-OTG components.
The two parts are designed to be software compatible and are supplied in a 100-pin
TQFP package and a 48-pin FBGA package respectively. The EZ-Host includes the
capability to have external memory added while the EZ-OTG can only use its internal
memory. Both devices have two Serial Interface Engines (SIEs) that may be
independently configured as a USB host or as a USB device. Additionally, one SIE
has hardware support for an OTG-style, dual-role device. The EZ-Host has two ports
on each SIE while the EZ-OTG has one port on each SIE. Both parts include a BIOS
in ROM that provides default management of the on-chip resources.

CPU Interrupt
Control Timers RAM

8K x 16

BIOS
ROM
4K x 16

Serial IOParallel IOMemory
Expand

SIE2SIE1

PLL

P.M.

Pin SharingOTG

USB A USB B USB A USB B

EZ-Host/EZ-OTG

EZ-Host Only

16-bit Internal Buses

CPU Interrupt
Control Timers RAM

8K x 16

BIOS
ROM
4K x 16

Serial IOParallel IOMemory
Expand

SIE2SIE1

PLL

P.M.

Pin SharingOTG

USB A USB B USB A USB B

EZ-Host/EZ-OTG

EZ-Host Only

16-bit Internal Buses

Figure 2-1. Block diagram of EZ-Host and EZ-OTG components

USB Multi-Role Device Design By Example

14

Central Processing Unit
 The CPU is a 16-bit RISC implementation with 16 general-purpose, 16-bit
registers mapped into memory via a regbank register (which is itself mapped into
memory) as shown in Figure 2-2. This mapping technique allows the use of multiple
register banks, if required, to process high frequency interrupts. Following a power-
on cycle, regbank defaults to 0100H. All arithmetic and logical operations set FLAGS
in accordance with 16-bit computations; the FLAGS register is also mapped into
memory as shown in Figure 2-2. The internal architecture is optimized for this local
memory-to-memory implementation.

 R0

R1

R2

R3

R4

R5

R6

R7

FLAGS

R8

R9

R10

R11

R12

R13

R14

R15 = SP

PC

C000H:
C002H:

xxx0H:

In CPU

REGBANK

Figure 2-2. All registers, except PC, are memory-mapped

Registers R0 through R7 are used for general-purpose data manipulations

and registers R8 through R15 are used as general-purpose pointers or for data
manipulation. The instruction set uses R15 as a stack pointer. The instruction set
includes a full set of orthogonal addressing modes that are well suited for a modern
compiler.

 Memory is byte addressable and the instruction set operates on byte
variables if required (but note that the FLAGS are set assuming 16-bit operands).
The 64KB memory space is used for code, data, IO locations, and register banks;
some memory addresses are pre-assigned by the hardware as shown in the memory
map in Figure 2-3. The BIOS makes additional address assignments – this is
described in the BIOS section.

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 15

 There are two programmable, hardware breakpoint registers that may be
used by a debugger to trap CPU execution events at full speed.

C
S1

C

S2

C
S3

BIOS ROM
8K

Page 2

Page 1

RAM
16K

Fxxx

Exxx

Dxxx

Cxxx

Bxxx

Axxx

9xxx

8xxx

7xxx

6xxx

5xxx

4xxx

3xxx

2xxx

1xxx

0xxx

Memory mapped IO locations (C0xx)

External Memory on EZ-Host only
 Accessed using 3 chip selects

USB Control/Buffers (02xx)

Interrupt Vectors (00xx)

Hardware reset location (FFF0)

Figure 2-3. Hardware assigned memory map

Memory Expansion Capability
 Only the EZ-Host, in its 100-pin package, supports the addition of directly
addressable external memory. This memory can be static RAM or ROM. BIOS
makes some assumptions about where each type of memory is located, but the
hardware just sees it as “external” memory. Three pre-decoded chip selects are
available, one for each region, and each region can be populated with 8-bit or 16-bit
memory with different access times.

Additional EZ-Host Capability
 The additional pins of the EZ-Host package enable it to support an additional
IO capability of four PWM channels and an IDE interface.

USB Multi-Role Device Design By Example

16

Integrated Timers
 Both the EZ-Host and the EZ-OTG have three timers – two general purpose
timers and one watchdog timer that can be enabled to reset the CPU.

 Power Management
 The CPU and IO devices are designed to operate at 48 MHz. An internal
Phase Lock Loop generates this operating frequency from an external clock or crystal
running at 12 MHz. The CPU can be slowed using a clock divider (2 through 16) or
halted to conserve power. The CPU can also suspend itself, after enabling a variety
of wakeup sources, to reduce power-consumption to a minimum.

 The CPU core requires 3.0 volts to operate and this may be difficult when it is
operating on battery power. Both the EZ-Host and EZ-OTG include an integrated
power booster than can generate the required 3.0V from a battery that has dropped
to as low as 2.7 volts. A few external components are required to implement this
feature (shown in Figure 2-4), and these are only installed if a stable 3.3V voltage
source is not available.

EZ-Host
Or

EZ-OTG

BoostVcc

Vswitch

AVcc+Vcc

Figure 2-4. An integrated power booster is used for battery-powered applications

When operating as an OTG host the EZ-Host/EZ-OTG needs to generate a

VBUS of 5.0 volts. A charge pump is integrated into each part that enables them to
generate 5.0 volts from their 3.3V supply if required. A few external components,
shown in Figure 2-5, are required for this charge pump. The EZ-Host/EZ-OTG can
supply up to 10mA with this circuit, which is sufficient to support low-power, bus-
powered devices such as some keyboards and mice. Note that if 5.0 volts is
available in your design then the charge pump circuitry is not used and the external

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 17

components are not required. The OTG VBUS connection should still be made since
the EZ-Host/EZ-OTG requires this for detection and signaling.

EZ-Host
Or

EZ-OTG

CswitchA

CswitchB

OTGVBus VBus

Figure 2-5. An integrated charge pump is used for battery-powered applications

USB Capabilities
 Much of the functionality of the EZ-Host and the EZ-OTG is centered around
their USB capabilities. Both components have two independent Serial Interface
Engines (SIE) that enable connections to two independent USB segments. The EZ-
Host supports two USB ports on each SIE while the EZ-OTG supports a single port
on each SIE. The “A” connection on SIE 1 additionally supports all the features
required by the On-The-Go supplement to the USB 2.0 Specification. It can be
configured as a host port or a peripheral port and may be programmatically switched
as required by an application.

You will discover in later chapters that the EZ-Host/EZ-OTG components
come with a Frameworks firmware development code-base that implements full
support for the on-chip resources including the logic of the Host Negotiation and
Session Request Protocols (HNP and SRP). Figure 2-6 shows a summary of the
possible USB configurations available with the EZ-Host and EZ-OTG components.

USB Multi-Role Device Design By Example

18

OTG
Port

Host
Port

Peripheral
Port

1 1 or 2* 0
1 0 1
0 2, 3* or 4* 0
0 1 or 2* 1
0 0 2

* = EZ-Host only

Figure 2-6. EZ-Host/EZ-OTG components support several USB configurations

Parallel IO
 There are up to 25 independent input or output signals on the EZ-OTG
component and 32 on the EZ-Host component. Each IO line can source and sink
4mA. This parallel IO may be configured as a Host Port Interface (HPI) that provides
slave control and status ports for an external processor. Figure 2-7 shows the
connection of an EZ-Host or EZ-OTG in this mode. The external processor is
running some operating system that needs to support USB as a host or as a device.
This processor will send commands and data to the EZ-Host/EZ-OTG using a full
Link Control Protocol (LCP) implemented in the BIOS. In this mode the EZ-Host/EZ-
OTG operates as a (very) smart peripheral and handles all of the low-level USB
communications on behalf of the external processor. An example using LCP with a
Linux host is presented in Chapter 7.

“Main”
Processor

(Any)

RAM ROM

Other IO EZ-Host
or

EZ-OTG

HPI

Host Device

OS
Any

Note: can also
Connect using

SPI of HSS

Figure 2-7. EZ-Host/EZ-OTG support a coprocessor mode

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 19

Serial IO
 Both the EZ-Host and EZ-OTG additionally support a variety of serial
protocols: High Speed Serial (HSS), industry-standard Serial Peripheral Interface
(SPI), a UART designed as a serial debug port, and I2C. The I2C interface to serial
EEPROM is always available and may be used to add code or data to the default
BIOS configuration (this is described, in detail, in the scan section). A UART serial
debug port is always available with the EZ-Host but it is only available when GPIO is
selected for the parallel IO of the EZ-OTG. I found that, in general, I did not use this
serial debug port since better functionality is available via a USB port.

 BIOS also supports a Link Control Protocol (LCP) on the SPI port and the
HSS port. Since these protocols do not have direct access to internal memory (the
HPI port does) then additional data transfer steps must be used. If your USB
bandwidth requirements for a co-processor are low then these serial interfaces
enable a viable alternative to the HPI parallel connection. A common protocol allows
different configurations for different applications while preserving the software
investment. LCP is described in Chapter 7 with a co-processor example.

IO Summary
Figure 2-8 summarizes the IO configuration of the EZ-Host and the EZ-OTG

components in each of the modes.

USB Multi-Role Device Design By Example

20

GPIO HPI IDE1 PWM HSS SPI UART
GPIO31 SCL SCL
GPIO30 SDA SDA
GPIO29 OTGID OTGID
GPIO24 INT nACK
GPIO23 nRD nRD
GPIO22 nWR nWR
GPIO21 nCS -
GPIO20 A1 DIR
GPIO19 A0 nRQT
GPIO15 D15 D15 CTS2
GPIO14 D14 D14 RTS2
GPIO13 D13 D13 RxD2
GPIO12 D12 D12 TxD2
GPIO11 D11 D11 MOSI
GPIO10 D10 D10 SCK
GPIO9 D9 D9 SSI
GPIO8 D8 D8 MISO
GPIO7 D7 D7 TX2
GPIO6 D6 D6 RX2
GPIO5 D5 D5
GPIO4 D4 D4
GPIO3 D3 D3
GPIO2 D2 D2
GPIO1 D1 D1
GPIO0 D0 D0

Additional IO pins of EZ-Host
GPIO28 TX
GPIO27 RX
GPIO26 PWM3 CTS
GPIO25
GPIO18 A2 PWM2 RTS
GPIO17 A1 PWM1 RxD
GPIO16 A0 PWM0 TxD

Memory Expansion of EZ-Host
D15 CTS
D14 RTS
D13 RxD
D12 TxD
D11 MOSI
D10 SCK
D9 SSI
D8 MISO
D0:7
A0:18
Control
Note 1: EZ-Host only, Note 2: EZ-OTG only

Figure 2-8. EZ-Host and EZ-OTG IO functionality.

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 21

Firmware Features
 The EZ-Host and EZ-OTG components are designed to be software
compatible and they use the same BIOS. If BIOS accesses non-existent features on
the EZ-OTG device then no errors or side-effects are created. EZ-Host has an
external memory bus, and BIOS will use this to check for the presence of RAM
and/or ROM – the EZ-OTG device will always return false to these tests.

 BIOS contains 8KB of very dense CY16 assembler code and this creates a
default configuration. The BIOS is designed to be over-rideable in whole (EZ-Host
only since it supports external memory) or in parts. It is table-driven and makes
extensive use of interrupt vectors. The BIOS is organized as a set of subroutines
that are accessed via an interrupt vector table in low memory. This vector table has
48 hardware vector entries and 80 software vector entries as outlined in Figure 2-9.

ret

ret

Service Routine

Service Routine

Interrupt Vector Table

Software
Vectors

Hardware
Vectors

0

49

127

48

sti

Figure 2-9. Interrupt Service Routines are accessed via a table in RAM

USB Multi-Role Device Design By Example

22

The operation of BIOS may be changed by replacing an existing interrupt
service routine (ISR) or by chaining additional code to an existing interrupt service
routine (how this is done is described next). ISR replacement involves replacing the
routine address in the interrupt vector table with a new address. Chaining requires
the existing routine address be saved before being replaced by the new routine
address. The new routine, when it has finished its task, jumps to the previous routine
using this saved address. If you wanted your new routine to execute AFTER the
previous routine then you would CALL the previous routine and, once it returned, you
would execute your new code. All three examples, pre-processing, post-processing
and replacement, are shown in Figure 2-10. Chaining is an important concept and is
used throughout the BIOS.

ret

Interrupt Vector Table

ret

jmp

call

Pre-process

Post-process

Replacement

ret

ret

ret

Interrupt Vector Table

ret

jmp

call

Pre-process

Post-process

Replacement

ret

ret

Figure 2-10. Changing or enhancing BIOS operation

BIOS Operation
 The BIOS documentation from Cypress describes, in detail, the default
operation of all of the assigned interrupt vectors. There are several unassigned

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 23

vectors where you can add additional capability and you can change existing vectors
to change how BIOS operates. The BIOS documentation defines the facts of
operation, but three concepts deserve more explanation: Memory Management,
Idle_Loop, and SCAN.

BIOS Memory Management
 If you allow the BIOS initialization to complete (you don’t have to, SCAN will
describe how you over-ride this), BIOS will own all of the un-used RAM, and it
provides a mechanism to allocate and free memory buffers to running programs.
Figure 2-11 shows how memory is allocated by BIOS – free memory extends from
the top of BIOS-use memory to 3FFFH (or 7FFFH if external memory is added to an
EZ-Host part).

BIOS ROM
8K

External ROM
8K

External Memory
Page 2. 8K

External Memory
Page 1. 8K

External RAM
16K

RAM
16K

Fxxx

Exxx

Dxxx

Cxxx

Bxxx

Axxx

9xxx

8xxx

7xxx

6xxx

5xxx

4xxx

3xxx

2xxx

1xxx

0xxx

Memory mapped IO locations (C0xx)

Hardware reset location (FFF0)

Free

Free

Free (debugger stub)

BIOS Local Variables

BIOS Stack

USB Control + Buffers

BIOS Comm. Buffers

Interrupt Vectors

07xx

06xx

05xx

04xx

03xx

02xx

01xx

00xx

Low memory detail

BIOS ROM
8K

External ROM
8K

External Memory
Page 2. 8K

External Memory
Page 1. 8K

External RAM
16K

RAM
16K

Fxxx

Exxx

Dxxx

Cxxx

Bxxx

Axxx

9xxx

8xxx

Fxxx

Exxx

Dxxx

Cxxx

Bxxx

Axxx

9xxx

8xxx

7xxx

6xxx

5xxx

4xxx

3xxx

2xxx

1xxx

0xxx

7xxx

6xxx

5xxx

4xxx

3xxx

2xxx

1xxx

0xxx

Memory mapped IO locations (C0xx)

Hardware reset location (FFF0)

Free

Free

Free (debugger stub)

BIOS Local Variables

BIOS Stack

USB Control + Buffers

BIOS Comm. Buffers

Interrupt Vectors

07xx

06xx

05xx

04xx

03xx

02xx

01xx

00xx

07xx

06xx

05xx

04xx

03xx

02xx

01xx

00xx

Low memory detail

Figure 2-11. BIOS assigned memory map

BIOS uses four software vectors for memory allocation:

 INT 69 Pointer to first memory allocation block
 INT 68 Allocate x bytes of memory
 INT 75 Return previously allocated memory
 INT 76 Recalculate free memory (error recovery)

USB Multi-Role Device Design By Example

24

BIOS uses memory allocation blocks to describe available and used
memory. Following initialization there will be two memory allocation blocks; INT 69
will point to the first one and this links to the second one. A memory allocation block
contains two words – the first word describes how many bytes are present in this
block and the second word is a busy (= 8000H) or available (= 0) flag. Figure 2-12
shows the memory allocation blocks at initialization and also after three memory
blocks (0x1360, 0x100 and 0x2000 bytes) have been allocated and one block (0x100
bytes) returned.

Size
Busy/Free

1364
8000

104
0

2004
8000

46F0
0

To EOM
Busy

Vector 69

Vector 69

Size
Busy/Free

1364
8000

104
0

2004
8000

46F0
0

To EOM
Busy

Vector 69

Vector 69

Figure 2-12. Typical Memory Allocation Blocks in use

Before I go into more detail I am going to recommend that you do not use

this mechanism. It is a good scheme that is useful in allocating data buffers, but the
problems come later when you want to load code into an allocated memory block
(this is SCAN described later in this section). The major issue is that EZ-Host/EZ-
OTG code is not inherently relocatable – any CALL or long JUMP will use an
absolute address that needs to be “fixed up” prior to execution. Computed jumps or
calls are very difficult to fix-up. SCAN does provide a fix-up mechanism but it
assumes that code was written in assembler and all of the fix-up addresses are
readily identifiable. Almost all of the examples that will be presented in this book are
written in C, and no automated tool exists to enable a binary image of this code to be
relocated. The examples will therefore use statically allocated code and data.

So why did I spend two pages describing a feature that I don’t want you to
use? Well, many routines within BIOS use the mechanisms to allocate memory, so
we need to be aware that BIOS may think that our program space is “free to be
allocated.” The examples that we will create will need to give BIOS some memory
that it can use. A sophisticated user may use this capability, but I do not recommend
it for general use.

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 25

BIOS Idle Task
 If we allow the BIOS initialization to complete it will set up an Idle_Task that
executes a series of routines chained together. Remember that a chain is as strong
as its weakest link – the mechanism is good provided we handle it correctly. BIOS
uses three software vectors for Idle_Task management:

 INT70 Start of Idle Chain
 INT71 BIOS’s Idle Task
 INT72 Insert task into Idle Chain

 The BIOS Idle_Task is a continuous loop as shown in Figure 2-13. If there is
no work to do, then the CPU HALTs. It is brought out of halt by any enabled
interrupt, which it first services. The CPU then executes the tasks in the Idle Chain to
check for additional work to do. When completed it halts again waiting for any
enabled interrupt.

 Idle: ; Pointed to by INT71
 addi r15, 2 ; Removed return address from stack
 halt ; Wait for an enabled interrupt
 INT 70 ; Check the Idle Chain
 INT 71 ; Call myself

Figure 2-13. The BIOS Idle Loop

Adding a task to the Idle_Chain is implemented via Int72. You pass a pointer

to the start of the new task in R0 and a pointer to the next task in the chain is
returned in R0 – you should jump to this once your task is completed as shown in
Figure 2-14.

 Init_Another_Idle_Task:
 mov r0, Another _Idle_Task ; Provide pointer to my task
 INT 72 ; Insert task into chain
 mov [Next_Task], r0 ; Save pointer to next task
 ret ; Initialization complete
 Another _Idle_Task:
 ;
 ; insert your code here, it completes with…
 ;
 jmp [Next_Task]

Figure 2-14. Adding a new task to the Idle Chain

USB Multi-Role Device Design By Example

26

 The default operation for BIOS is to initialize its numerous subsystems
(UART, USB etc) and wait for work to do. You can over-ride this operation by adding
code and data using the scan task.

BIOS Scan Operation
 SCAN is the operation that is used to modify the default operation of BIOS.
Early in the BIOS initialization it starts looking for “scan signatures” – it looks in many
places but the easiest to explain is accesses to EEPROM connected to the I2C bus.
Think of the EEPROM as a provider of a byte stream. BIOS will start reading from
I2C address 0 and will continue to read sequentially until it runs out of “scan records.”
A scan record consists of a header and some data as shown in Figure 2-15.

C3
B6

nn
nn

xx

dd
dd
dd
dd

C3
B6

nn
nn

xx

dd
dd

00
00

nn
nn

nn
nn

Scan Signature

Data Length

Op Code

Data0
::
::
Datan

Scan Signature

Data Length

Op Code

Data0
Datan

Terminator

Scan Header

Scan Data

Scan Header

Scan Data

Scan Record

Scan Record

Not a Scan Signature

B
yt

e
S

tre
am

C3
B6

nn
nn

xx

dd
dd
dd
dd

C3
B6

nn
nn

xx

dd
dd

00
00

nn
nn

nn
nn

Scan Signature

Data Length

Op Code

Data0
::
::
Datan

Scan Signature

Data Length

Op Code

Data0
Datan

Terminator

Scan Header

Scan Data

Scan Header

Scan Data

Scan Record

Scan Record

Not a Scan Signature

B
yt

e
S

tre
am

Figure 2-15. Detail of scan records in EEPROM

Scan checks the first word of a record for the special signature value of 0xC3B6, and
if a match is not found then SCAN gives up on this byte stream and looks elsewhere.
If a match is found then SCAN reads the next word as a DATA_LENGTH and the
next byte as an OPCODE. There are currently 10 opcodes as shown in Figure 2-16.

 Chapter 2: Getting to know EZ-Host and EZ-OTG

 27

Scan continues to look for scan signatures during run time via the USB and UART
Idle_Tasks. This will allow program code and data to be downloaded at any time –
the debugger uses this feature extensively.

Op Code

0

1

2

3

4

5

6

7

8

9

Effect

Copy N-2 bytes to memory starting at ADDR

Copy N-1 bytes to memory pointed to by VEC

Request N-1 byte buffer from BIOS, set VEC to point to
this buffer. Copy N-1 bytes into this buffer

Add the real address pointed to by VEC to the following
list of ADDR’s. This is a relocation fixup.

Jump to ADDR. BIOS just gave the CPU away

Call to ADDR, return control to BIOS

Execute VEC

Copy N-2 bytes from memory at ADDR1 to I2C at ADDR2
VEC should be 64 or 65 ie I2C_Write

Request a buffer from BIOS, copy N-? Bytes into buffer,
Then copy buffer to I2C at ADDR, then free buffer
VEC should be 64 or 65 ie I2C_Write

Write VALUE into 0xC000 + OFFSET, ie update configuration

Interpret bytes as:

N ADDR D D

N Vec D D

N Vec D D

N Vec ADDR ADDR

2 ADDR

2 ADDR

1 Vec

N ADDR ADDRVec

N ADDRVec D D

N Off Value Off Value

Op Code

0

1

2

3

4

5

6

7

8

9

Effect

Copy N-2 bytes to memory starting at ADDR

Copy N-1 bytes to memory pointed to by VEC

Request N-1 byte buffer from BIOS, set VEC to point to
this buffer. Copy N-1 bytes into this buffer

Add the real address pointed to by VEC to the following
list of ADDR’s. This is a relocation fixup.

Jump to ADDR. BIOS just gave the CPU away

Call to ADDR, return control to BIOS

Execute VEC

Copy N-2 bytes from memory at ADDR1 to I2C at ADDR2
VEC should be 64 or 65 ie I2C_Write

Request a buffer from BIOS, copy N-? Bytes into buffer,
Then copy buffer to I2C at ADDR, then free buffer
VEC should be 64 or 65 ie I2C_Write

Write VALUE into 0xC000 + OFFSET, ie update configuration

Interpret bytes as:

N ADDR D D

N Vec D D

N Vec D D

N Vec ADDR ADDR

2 ADDR

2 ADDR

1 Vec

N ADDR ADDRVec

N ADDRVec D D

N Off Value Off Value

Note: shaded field indicates a repeated field

Figure 2-16. SCAN has 10 defined Op Codes

Take a moment to study the effects of a SCAN operation, shown in Figure 2-

16. This is a very powerful mechanism that can be used to download new code and
data into RAM.

I described the EEPROM as a byte stream – SCAN will also accept a byte
stream from the UART or from USB. Additionally the Link Control Protocol supported
by the HPI, SPI and HSS interfaces offers a similar set of capabilities while in co-
processor mode. These mechanisms make it very easy to load application programs
into the EZ-Host and the EZ-OTG, and we shall run through some examples in the
next few chapters.

BIOS has control of the CPU at power-up. It uses the CPU to execute the
BIOS code including the SCAN function. It can load a new program using a variety of
scan codes. Now focus on scancode (4). BIOS can pass ownership of the CPU to a
loaded program. The effect of this is that BIOS will not complete its initialization and

USB Multi-Role Device Design By Example

28

will not set up its Idle Task. The loaded program now has the responsibility of owning
the Idle_Task. It could set up its own idle task, and this must call the BIOS Idle Chain
(INT 70) to keep low level functions, such as SCAN, operating, or it could pass
control back to BIOS via a restart of the Idle_Task.

Other BIOS functions
 BIOS has a wide array of functions that deal with the low-level details of USB
communications when operating as a host or as a device. These are best described
with the aid of an example, but this means we need to be familiar with the EZ-
Host/EZ-OTG development environment and example Frameworks. This will be the
focus of the next chapter.

Chapter Summary
 The EZ-Host and EZ-OTG components have a great deal of capability that
we can use to implement a wide variety of USB based products. Two independent
Serial Interface Engines (one with dual-role capability) are supported by a 16-bit
RISC CPU, 16K of RAM, and parallel and serial IO functions. An integrated BIOS
provides a default configuration with interrupt service routines to support essential
low-level operation of all of the hardware features. The BIOS is over-rideable in
whole (EZ–Host only) or in parts using a SCAN mechanism.

 The next chapter will show how easy the EZ-Host/EZ-OTG components are
to use.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 29

Chapter 3: EZ-Host/EZ-OTG Development Environment

 Firmware development for the EZ-Host/EZ-OTG employs Windows-based
tools, and this chapter assumes that the Cypress CY3663 DVK is used as a target for
the example code. The DVK includes a StrongArm-based single board computer
(SBC) and two mezzanine boards, one EZ-Host based and the other EZ-OTG based
as shown in Figure 3-1. In this chapter we will use the EZ-Host board in standalone
mode as a vehicle to learn the toolset and debug process. The tools should be
installed according to the Cypress documentation.

 EZ-OTG Development Board EZ-Host Development Board

StrongArm Single Board Computer

Figure 3-1. Development kit includes an SBC and 2 mezzanine boards

USB Multi-Role Device Design By Example

30

 Firmware is developed using the GNU Toolset hosted on a Windows-based
platform via the Cygnus UNIX emulation engine, Cygwin. The full complement of
GNU Tools (compiler, assembler, make, linker, debugger and utilities) are provided
with the CY3663 installation, and these are integrated into a Windows environment,
and are ready-to-use, as shown in Figure 3-2.

Windows Operating System

G
D

B

E
xp

lo
re

r

E
di

to
r

In
si

gh
t

Li
b

R
em

ot
e

m
ak

e
LD ba

sh

D
O

S
Bo

x

D
O

S
Bo

x

C
C AS

Cygwin

Win32 API

Class Drivers

Device Drivers

HardwareU
S

B

C
O

M

U
S

B
D

User
Kernel

GUI

Command
Line
Iinterface

“Windows”
Tools

DOS
Tools

GNU Tools

Windows Operating System

G
D

B

E
xp

lo
re

r

E
di

to
r

In
si

gh
t

Li
b

R
em

ot
e

m
ak

e
LD ba

sh

D
O

S
Bo

x

D
O

S
Bo

x

C
C AS

Cygwin

Win32 API

Class Drivers

Device Drivers

HardwareU
S

B

C
O

M

U
S

B
D

User
Kernel

GUI

Command
Line
Iinterface

“Windows”
Tools

DOS
Tools

GNU Tools

Figure 3-2. Simplified view of CY16 Development Environment

I included DOS tools in Figure 3-2 since they help to describe the GNU tools.

Windows supports multiple “DOS boxes” within its windowed GUI environment. A
DOS command is typically text input via a command line, and it creates text output.
A series of DOS commands can be combined in a BATCH file (*.bat), and program
output can be redirected to a text file for later viewing or processing.

All of the GNU tools are also command line based and, like DOS commands,
may be run interactively or via a command file. The GNU tools call the command
scripts, and these are much more sophisticated than their DOS counterparts. The
CY3663 DVK includes all of the scripts that you will need for successful development
– whether this is rebuilding one of the examples or creating your own. If you don’t
want to delve into the “how” the tools work then you can just use them and ignore the
fact that they are GNU-based.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 31

 Another huge benefit of using the GNU tools is that the same process is used
to generate and debug code for the CY16 components (EZ-Host and EZ-OTG) or the
StrongArm component on the SBC. [Or, for that matter, ANY processor supported by
the GNU code generation backend]. We specify the target processor in a makefile.

 The GNU tools include a windowed debugger, called Insight, that sits on top
of the standard GNU debugger, GDB. We will use this as part of our development
process. Developing CY16 firmware is a straight forward process: we create source
files and makefile scripts using a good multi-file text editor; we build our object code
then download it to a target and debug it. I tell everyone that the software is the easy
part of an embedded microcontroller project since it is only 1’s and 0’s. The hard part
is getting them in the right order

CY16 Firmware Architecture
 We saw, in Chapter 2, that the EZ-Host and EZ-OTG components have a
wide range of hardware capabilities that can be employed to implement a wide
variety of USB solutions. Harnessing these capabilities into an easy-to-use
framework was quite a challenge but, by following the methodology outlined in this
chapter, you will be able to quickly build custom application programs to meet your
requirements.

 I chose to increment into a full design example using a series of simple
examples that explore individual features of the CY16 architecture. Each simple
example builds on the previous one to create a multi-purpose design example. I will
cover several capable design examples in later chapters.

 The BIOS sets up an event-driven environment with chained idle tasks.
Layered on top of BIOS is a development Frameworks, and layered on top of this
framework is our application code (simple example or design example). Each of
these layers consists of three distinct Tasks as shown in Figure 3-3.

USB Multi-Role Device Design By Example

32

Init_Task
Init _Task Init _Task

Idle _Task

Idle _Task

Idle _Task

CallBack
Tasks

CallBack
Tasks

CallBack
Tasks

Chain
Chain

BIOS
Subsystem

Frameworks
Subsystem

Application
Subsystem

Layering

Init_Task
Init _Task Init _Task

Idle _Task

Idle _Task

Idle _Task

CallBack
Tasks

CallBack
Tasks

CallBack
Tasks

Chain
Chain

BIOS
Subsystem

Frameworks
Subsystem

Application
Subsystem

Init_Task
Init _Task Init _Task

Idle _Task

Idle _Task

Idle _Task

CallBack
Tasks

CallBack
Tasks

CallBack
Tasks

CallBack
Tasks

CallBack
Tasks

Chain
Chain

BIOS
Subsystem

Frameworks
Subsystem

Application
Subsystem

Layering

Figure 3-3. CY16 firmware is layered and is task based

 The Init_Task is responsible for setting up the Idle_Task and any
CallBack_Tasks. The Init_Task is only run once, so any memory it uses may be
returned after it has executed. After execution, the Init task returns control of the
processor back to the caller.

 The Idle_Task must honor an Idle_Chain. All of the Idle_Tasks are
dynamically linked together and each is responsible for maintaining this chain. There
is no central kernel that is scheduling tasks. The primary scheduling mechanism is
hardware interrupts. When not serving interrupts, the Idle_Task of each software
subsystem runs and looks for work to do. Each subsystem calls the next using the
chaining mechanism. The chaining mechanism is simple and involves a single call
as will be shown in the examples.

 CallBack_Tasks are procedures that are run as a result of some event
occurring. This event could be a hardware interrupt, a software interrupt or some
processing in an Idle_Task that created some work to be done.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 33

 All firmware that we develop for the EZ-Host/EZ-OTG will follow this format of
Init_Task, Idle_Task and CallBacks. Each of the tasks is drawn as a single block in
Figure 3-3, but this should not infer that each block is a single, monolithic procedure.
The Init_Task and Idle_Task have a single entry point but will typically contain
multiple procedures.

Frameworks Subsystem
 The Frameworks subsystem, drawn as a single layer in Figure 3-3, contains
a wide range of subsystems implemented at the application subsystem layer – our
application is just one of the subsystems that it manages. Basically, if the EZ-
Host/EZ-OTG has a hardware capability then Frameworks has a software subsystem
to support it. Frameworks also contains software subsystems to manage the
hardware on the mezzanine boards – buttons, dipswitches, LEDs, and seven
segment display.

 The Frameworks subsystem is built from the source files in the COMMON
directory. Take a quick look into this directory and note that the common module list
is very complete. Each module is designed around a CY16 capability, and individual
features are contained within conditional compilation directives. You will not need to
edit any files in this directory, but Frameworks is supplied in source format for those
users who want to. A single file in each application directory, called fwxcfg.h, is used
to select which features of Frameworks should be included to support the application
program. My first set of “simple examples” will use pre-configured fwxcfg.h files, and
we shall learn how to edit fwxcfg.h in a later chapter.

Simple Example #1 - Hello World
 The first program we always write is “Hello World” where “Hello World” is
displayed on a console. Our target system, the EZ-Host mezzanine board, does not
have a console, but it does have a seven-segment display and some buttons. Our
“Hello World” program will first display the letter “H” on the seven-segment display
then advance through the other letters of hello as we press any button. This uses
next-to-no features of the EZ-Host (hardware or BIOS) allowing us to focus upon the
process of creating and debugging a program in this environment.

 All of the source files for se1 (simple example #1) are contained within the
se1 directory. If you have installed the Cypress CD-ROM in its default location, all of
the simple example directories will be located in C:\Cypress\USB\OTG-
Host\Source\stand-alone. Figure 3-4 shows a source listing of app.c. The only
initialization in the Init_Task warns BIOS that we are using some memory. The
button debouncing and press event is handled within Frameworks, so all we have to
do is install a Callback_Task, with a pre-defined name, to handle this event.

USB Multi-Role Device Design By Example

34

Frameworks also handles driving the seven segment display, so we just call one of
its IO routines. So how do we build and debug our three-line application program?

/* Application data. */
// Declare the Hello Message in Seven Segment Display "font"
const uint8 HelloMessage[] = { 0x7F, 0x89, 0x86, 0xC7, 0xC7, 0xC0, 0xFF };
static uint16 HelloIndex;

// Declare the app_init_task
void app_init(void) {
// Tell BIOS that we, and the GDB stub, are in memory. For DEBUG only
 __asm("mov r0, 0x1360");
 __asm("int %0" : : "n" (ALLOC_INT));
 app_button_handler (0); // Clear the display
}

// Declare the app_idle_task. No work here, see Button Callback

// Declare the CallBack routines
void app_button_handler(BUTTON button) {
// Advance through the display text on any button press
 if (HelloIndex++ > sizeof(HelloMessage)-2) HelloIndex = 0;
 write_cpld (SSD_WRITE, HelloMessage[HelloIndex]);
}

Figure 3-4. Our first example application program

Within the se1 directory there are several other files. I created the

Frameworks configuration file, fwxcfg.h, and there is no need for you to look at this
yet (you will have ample opportunity later). There is a makefile script that defines the
rules of how our simple example should be built. The makefile will use a linker script
(se1.ld) to locate our program at 1000H (why is described in the next section).
There is also a DOS batch file called bash_env.bat that we will use to save a lot of
typing.

Target System
 Before building our application program we need to consider the capabilities,
and constraints, of our target system. Our first example will use the EZ-Host
mezzanine board in standalone mode. Note that the EZ-OTG mezzanine board
could also be used for this example, and it will produce identical results. Figure 3-5
shows key features of the mezzanine board.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 35

CPU

SIE2

+5 Volts

SIE1

CPU

SIE2

+5 Volts

SIE1

Figure 3-5. Key features of a mezzanine board

 We will attach the mezzanine board to our development system using a USB
cable to SIE2. Note that all dip switches will be set to OFF. The BIOS contains a
default USB device descriptor, and this will be used to enumerate a connection. This
default device uses a VID/PID of 0x4B4/0x7200, and this will load a CyUSBGen.sys
device driver (this, and the INF files that set up this relationship, were installed when
the toolset was installed). CyUSBGen.sys is a custom device driver that creates a
DOS device called USBSCAN – this device uses vendor-defined commands to send
a byte stream to the mezzanine board (byte stream was discussed in the SCAN
section of Chapter 2). This connection will be used by the debugger.

 Let’s first tell the GNU tools that we will be debugging our software on a
remote target (i.e., not using the PC’s processor). Double-click the bash_env.bat
icon in the se1 directory – this will open a DOS window and then start a bash shell.
At the prompt enter “cy16-elf-libremote -u.” This will start a standardized tool
that the debugger will look for when it runs – libremote is the bridge between the PC-
hosted debugger application and our remote target.

 When the debugger runs, libremote will copy a small stub program onto our
target board. It uses this to control the operation of the target. The stub installs itself
as the BIOS Idle_Task and therefore has complete control of the processor (it calls
the Idle_Chain to keep all other tasks operational). This stub loads in free memory at
500H (approximate, different versions load in different places) and extends to 0xA00,
so I chose 1000H for the origin of se1 since this is well above the debugger space.

USB Multi-Role Device Design By Example

36

 Leave this libremote window open and return to the Windows explorer.

 Double-click the bash_env.bat icon again to create another bash window. At
the prompt enter “make.” This will use the makefile script to build se1. There should
be no errors. Then enter “cy16-elf-gdb se1” at the bash prompt. This will open
the Insight debugger (gui shell on top of gdb) in another window. If this is the first
time running Insight then you must set the target settings (Target=Remote/TCP,
Hostname=localhost, Port=2345); these settings will be remembered. Now click the
run icon. Insight will find libremote and establish a connection to our target system (if
the libremote window is visible you will see the connection accepted) and will then
download our example code to the EZ-Host mezzanine target board. You can now
single step through the source code, set breakpoints, view all data using the symbols
that were created in the source code, view registers or memory, or whatever you
desire to debug the program. Insight, and its base gdb, are very capable debuggers.
An online manual was installed when the tools were installed; I would recommend
printing it out and studying it now (refer to Cypress/USB/OTG-Host/Docs/OTG-Host
Tools/3_debug.pdf).

 When we click “continue” with no breakpoints set, the program will run
forever until we click the STOP icon. Holding down the top or bottom buttons on the
mezzanine board will result in “HELLO” being cycled through the seven-segment
display. Pressing any button will advance one letter at a time. This is our first CY16
program.

 If you have a large screen then your development environment will look
something like Figure 3-6 – an editor window (I use UltraEdit), an Insight main
window with several support windows, and two bash windows. The Windows
environment makes it easy to switch between these different programs.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 37

Figure 3-6. Firmware development uses multiple windows

 When you finish debugging, select exit from Insight's file menu. This closes
all of Insights windows. You may need to enter a Control+C in the libremote window
to regain control of the bash shell. While in the libremote window hit the up-arrow
key – this will retrieve the previously entered command (cy16-elf-libremote -u) and hit
the enter key again. This sets up libremote for the next debug session.

 Similarly, in the other bash window, hitting the up-arrow key will retrieve
“cy16-elf-gdb se1,” and hitting it again will retrieve “make”. You can use this
shortcut to rapidly move around the edit-build-debug loop. For now however, type
“exit” to close this bash window.

 Note, if the up-arrow does not retrieve the previous command, enter “set –
o vi” to enable the command history/editing features. We will use about 2% of the
capability of a bash shell while running the examples – an interested reader should
review “Learning the Bash Shell” by Newham and Rosenblatt.

 Our first simple example used almost no CY16 features so that we could
focus on the TOOLS and the PROCESS. I wanted to do a USB device example

USB Multi-Role Device Design By Example

38

next, but we have to go on a slight diversion (still very educational) due to the default
operation of BIOS.

Simple Example #2 – Using Scan Records
 During initialization BIOS checks the state of two GPIO pins to discover
which mode it should start in. These two lines, GPIO30 and GPIO31, are also used
for I2C communications so they will have a power-on state of high due to the pull-up
resistors. This selects stand-alone mode, which is what we want (note that all of the
dipswitches should be OFF). BIOS scans the I2C EEPROM, then initializes SIE2 for
the debug tools, and then initializes SIE1 with the same default configuration.

 We do not want BIOS to initialize SIE1 since our application program will do
that with different parameters. We therefore need to change the default operation of
BIOS by adding scan records to the I2C EEPROM. This is the subject of se2 (simple
example #2). The se2 directory contains all of the files we need, and the main
program, eeprom.s, is repeated in Figure 3-7 for discussion.

.section .init
; First define the code that needs to be loaded
; It will be prefixed with a Scan Header
 .short ScanSignature
 .short Length+2
 .byte LoadCommand
 .short _start
.global _start
_start:
; Initialize SIE2 for the GDB debugger. Use the Cypress default
; configuration
 mov r2, 2 ; Choose SIE2
 mov r0, 0 ; Full speed
 int SUSB_INIT_INT ; Let the BIOS initialize SIE2
; I now need to give control back to BIOS
 mov r15, 0x400 ; Reset the stack
 sti ; First time interrupts are enabled
 int IDLER_INT ; This will not return
.equ Length, .-_start
; Now define a scan record that will transfer control to my program
 .short ScanSignature
 .short 2
 .byte JumpCommand
 .short _start
; Scan will not return so I need not have an EndOfScanRecords

Figure 3-7. Using scan records to modify BIOS operation

Since we only need SIE2 initialized, we must take control from BIOS using

the two scan records shown in Figure 3-7. We first initialize SIE2 (most of the work is
done by BIOS) for the debugger, and we must now own the idle chain or give control

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 39

back to BIOS so that it will own the idle chain. I chose to restart the idle chain by
resetting the stack pointer (R15) and calling BIOS using the IDLER_INT.

 The makefile and linker script are included in the se2 directory for your
review. Double click bash_env.bat in the se2 directory to open a bash window.
Enter “make” at the bash prompt to build eeprom.bin.

 The qtui2c utility program is used to download eeprom.bin into the I2C
EEPROM. Recall that all of the dipswitches were initially OFF when we powered up
the board. This brings it up in a default condition, which is necessary when we are
going to program an EEPROM. Dipswitches 6, 5, 4, and 3 must now be set to ON to
enable the I2C EEPROM. If you refer to the CY3663 Hardware User’s Manual that
was installed with the kit CD-ROM, you will note that this switch configuration selects
stand-alone mode with EEPROM 4 active. EEPROM 4 is currently unused, and so it
is available for storing our code. In a bash window, enter “qtui2c eeprom.bin f”
to program the EEPROM. With dipswitches 6, 5, 4, and 3 set the EZ-Host will read
the scan records from the EEPROM at power on and implement them. Our scan
records will cause BIOS to skip SIE1 initialization. Note how easy it was to
change/augment the operation of BIOS using scan records. We will later place
example code into the EEPROM so that it too runs on power on.

Simple Example #3 – Buttons and Lights Device
 Now that we are familiar with the tools used to create an application program,
and we know how to change/augment BIOS using scan records, we can tackle a
USB device example.

 Our first USB device will be a “Buttons and Lights” Human Interface Device
(HID). I chose to use a standard class driver rather than a custom device driver since
there will be less new topics to learn. BIOS includes default handling of standard
USB requests using default descriptors. It also includes default handling of class
requests (it stalls them all), so we will have a small amount of code to write to support
the HID. This example will forward mezzanine board button presses to the PC via a
HID input report. The seven-segment display will be controlled via HID output
reports. A PC-based application is provided to test its operation.

 The structure of simple example #3 (se3) is shown in Figure 3-8. The
Init_Task must setup BIOS to use our descriptors and must configure Callback
routines to implement HID-specific tasks that are not handled by BIOS. There is no
idle task in this example since button-presses are handled by Frameworks on our
behalf.

USB Multi-Role Device Design By Example

40

Data Declarations

Init_Task

CallBack_Tasks

No Idle_Task

Data Declarations

Init_Task

CallBack_Tasks

No Idle_Task

Figure 3-8. Structure of our first USB Device Example

Since this is our first USB example I want to move slowly to ensure that

every facet is understood. We will discover that BIOS handles a lot of the USB
specification requirements work for us, so our energies can be focused upon the
application program.

 Figure 3-9 shows the declaration of our USB device descriptors – this is a
standard HID class declaration that specifies that HID input reports are supplied on
endpoint 1 (EP1) and HID output reports are supplied on EP2. The report descriptor
defines each report as a single byte.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 41

// Define the descriptors for our "Buttons and Lights" HID example
USB_DEVICE_DESCRIPTOR const device_descriptor = {
 18, 1, 0x200, 0, 0, 0, 64, 0x4242, 0xc003, 1, 1, 2, 0, 1
};

uint8 const report_descriptor[] = {
 6, 0, 0xFF, // Usage_Page (Vendor Defined)
 9, 1, // Usage (IO Device)
 0xA1, 1, // Collection (Application)
 0x19, 1, // Usage_Minimum (1)
 0x29, 8, // Usage_Maximum (8)
 0x15, 0, // Logical_Minimum (0)
 0x25, 1, // Logical_Maximum (1)
 0x75, 1, // Report_Size (1)
 0x95, 8, // Report_Count (8)
 0x81, 2, // Input (Data,Var,Abs) = Buttons
 0x19, 1, // Usage_Minimum (1)
 0x29, 8, // Usage_Maximum (8)
 0x91, 2, // Output (Data,Var,Abs) = Lights
 0xC0 // End_Collection
};

USB_ALL_DESCRIPTORS const configuration_descriptor = {
 { /* config_descriptor header */
 9, 2, sizeof(USB_ALL_DESCRIPTORS), 1, 1, 0, 0xC0, 1 },
 { /* interface */
 9, 4, 0, 0, 2, 3, 0, 0, 3 },
 { /* class_descriptor */
 9, 0x21, 0x100, 0, 1, 0x22, sizeof(report_descriptor) },
 { /* EP1_In */
 7, 5, 0x81, 3, 8, 100 },
 { /* EP2_Out */
 7, 5, 2, 3, 8, 100 }
};

Figure 3-9. Example 3 Descriptors

The Init_Task, shown in Figure 3-10, adjusts the set of pointers that BIOS

uses to describe a USB device. We first change three data pointers so that BIOS will
use our descriptors rather than its default descriptors. We then change three function
pointers so that we modify BIOS’s default operation. The new functions and callback
routines that handle the IO are shown in Figure 3-11.

USB Multi-Role Device Design By Example

42

// Declare the app_init_task
void app_init(void) {
// Update the descriptor pointers that BIOS uses
 WRITE_REGISTER (SUSB1_DEV_DESC_VEC, (PFNINTHANDLER) &device_descriptor);
 WRITE_REGISTER (SUSB1_CONFIG_DESC_VEC, (PFNINTHANDLER) &configuration_descriptor);
 WRITE_REGISTER (SUSB1_STRING_DESC_VEC, (PFNINTHANDLER) &strings_descriptor);

// Chain a routine before BIOS's standard request handler
 BIOSStandardRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB1_STANDARD_INT*2);
 WRITE_REGISTER (SUSB1_STANDARD_INT*2, (PFNINTHANDLER) &InterceptStandardRequest);

// Add a Class Request Handler
 BIOSClassRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB1_CLASS_INT*2);
 WRITE_REGISTER (SUSB1_CLASS_INT*2, (PFNINTHANDLER) &HandleClassRequest);

// We need to know when a Set_Configuration is received
 BIOSConfigurationChange = (PFNINTHANDLER) READ_REGISTER (SUSB1_DELTA_CONFIG_INT*2);
 WRITE_REGISTER (SUSB1_DELTA_CONFIG_INT*2, (PFNINTHANDLER) &SetConfigurationRequest);

// Now initialize SIE1, this will result in it enumerating with the PC Host
 susb_init(SIE1, USB_FULL_SPEED);
}

Figure 3-10. Operation of BIOS is changed by replacing pointers

We first intercept a standard USB Request. BIOS does not know about HID

class so does not check for GetDescriptor (Interface). We need to do this and, if we
detect this command, then we must supply the HID Report Descriptor. If we do not
detect this command then we call the BIOS handler that implements all of the other
standard USB commands for us.

We use BIOS to send the report descriptor to the PC host. We create an
information block that describes our data (it’s address, length and a callback routine)
and pass it to BIOS to send. In our case, length is only 1 byte – we can put any
value in length and BIOS handles the transmission of multiple, endpoint–sized blocks
for us. When all of the data has been sent, BIOS will use the CallBack routine to let
us know. In this case of supplying a report descriptor we don’t have anything special
to do, so I specified a 0 which tells BIOS to handle the completion of the transfer on
our behalf.

The Handle Class Report CallBack implements the HID specific functions of
our application. There is not much to do in this simple example.

We need to know when our device has been successfully configured, so we
intercept the BIOS (SUSB1_DELTA_CONFIG) software interrupt. In our routine we
first allow BIOS to do its processing and then we can activate our data endpoints.
Note that BIOS parsed our descriptors and did things like enable the correct
hardware endpoints and other mundane “housekeeping” tasks.

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 43

We are interested in receiving reports from the PC host, so we setup a
lights_report data structure to be ready to receive data. We specify a
lights_report_received CallBack and give this task to BIOS to manage. When an
output report arrives from the PC Host then BIOS will call our routine for us. In our
lights_report_received routine we update our seven segment display and then post
another callback with BIOS.

Frameworks will inform us, via the app_button_handler callback, when any
button changes state. This HID device forwards this information as an input report to
the PC Host. Our task is to format the data suitable for BIOS, and we can then use
BIOS to send the report. We fill out a data information block and pass its address to
BIOS.

Notice that our example code only deals with the high-level details of our
“buttons and lights” application. The low-level enumeration and sending and
receiving of reports are handled by BIOS on our behalf. If you are someone who
likes to see ALL of the instructions that get executed then the source of BIOS is
available from Cypress upon request (but, be warned, it is in very tightly packed
CY16 assembler code). The code implements the sequences and protocols as
required by the USB specification. It is not all that exciting. You can change it if you
really want to, using SCAN records, but I would not recommend that. It is more
productive for you to put energy into your USB application.

void SetConfigurationRequest(void) {
 USB_DEVICE_REQUEST *req;
 req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ;
// Let BIOS handle this request first
 BIOSConfigurationChange();
// If I got configured then I can enable my data endpoints
 if ((req->wValue & 0xFF) ==

configuration_descriptor.config_header.bConfigurationValue) {
 Configured = TRUE; cpld_set_led(SLAVE_LED);
// Ask BIOS to inform me when a lights report is received
 setup_lights_report_callback();
 }
 else {
 Configured = FALSE; cpld_clr_led(SLAVE_LED);
 }
 }

void InterceptStandardRequest(void) {
 USB_DEVICE_REQUEST *req;
 req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ;
// BIOS does not handle GetDescriptor(Interface) so check for that
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) && ((req->bmRequestType & 3) == 1)

&& (req->wValue == 0x2200)) {
 report_descriptor_info.buffer = &report_descriptor;
 report_descriptor_info.length = sizeof(report_descriptor);
 report_descriptor_info.done_func = 0; // Let BIOS handle completion
 susb_send (SIE1, 0, &report_descriptor_info);
 }
 else BIOSStandardRequestHandler(); // Pass the request on to BIOS to handle

USB Multi-Role Device Design By Example

44

 }
void HandleClassRequest(void) {
// Manage the HID Class Requests for the "Buttons and Lights" device
 USB_DEVICE_REQUEST *req;
 req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ;
 switch(req->bRequest) {
 case USB_HID_SET_REPORT_REQUEST: // Should not get this since I declared EP2_Out
 case USB_HID_GET_REPORT_REQUEST: // Should not get this since I declared EP1_In
 case USB_HID_SET_IDLE_REQUEST: // Optional command, not supported
 case USB_HID_GET_IDLE_REQUEST: // Optional command, not supported
 case USB_HID_GET_PROTOCOL_REQUEST: // Will not get this, we are not a boot device
 case USB_HID_SET_PROTOCOL_REQUEST: // Will not get this, we are not a boot device
 default: BIOSClassRequestHandler();
 }
 }

void buttons_report_sent(void) {
 buttons_report_inuse = FALSE; // Reuse the same information block
 }

void app_button_handler(BUTTON button) {
// Report this change in button state to the host if we are configured
 if (Configured && !buttons_report_inuse) {
 buttons_report_info.buffer = &buttons_report;
 buttons_report_info.length = sizeof(buttons_report);
 buttons_report_info.done_func = buttons_report_sent;
 buttons_report = button;
 susb_send (SIE1, 1, &buttons_report_info);
 buttons_report_inuse = TRUE;
 }
 }

void lights_report_received(void) {
// Update my display with the new lights value and wait for the next update
 cpld_set_ssd(lights_report);
 setup_lights_report_callback();
 }

void setup_lights_report_callback() {
// Ask BIOS to alert us when the next report is received
 lights_report_info.buffer = &lights_report;
 lights_report_info.length = sizeof(lights_report);
 lights_report_info.done_func = (PFNINTHANDLER) &lights_report_received;
 susb_receive (SIE1, 2, &lights_report_info);
 }

Figure 3-11. The CallBack routines needed for Example 3

Simple Example #4 – BAL Host Program
 Just as we did in the first example, double click on bash_env in the se3
directory to create a bash window. Enter “make” to build the example then “cy16-
elf-gdb se3” to start the debugger. Click the RUN icon and note that the
debugger automatically inserted a breakpoint at Main ().

 Chapter 3: EZ-Host/EZ-OTG Development Environment

 45

 Connect a second USB cable from the SIE1 peripheral 1A connector of the
mezzanine board to a target PC as shown in Figure 3-12. I show two PCs, a target
PC and a development PC for clarity, but they could be the same PC running
programs in different windows.

CPU

Firmware Development PCTarget PC

CPUCPU

Firmware Development PCTarget PC

Figure 3-12. Using two PCs to test Example 3

Copy BAL.exe from the se4 directory onto your target PC and start this now.

I wrote this PC host test program in Visual Basic since this was the easiest way to get
the friendly display shown in Figure 3-13. The source code is available in the se4
directory. The display buttons and the real buttons operate as an OR while the
display seven–segment display and the real seven–segment display operate as an
AND. Pressing any button will increment both displays.

On the development PC clear all breakpoints and click “continue.” The
example 3 program will run, and it will start enumerating on the target PC. It is a
standard HID so no special INF file or other operating system software is required.
The “Buttons and lights” application will find the newly installed device, and the
buttons and display will be operational. This may take several seconds.

Our first EZ-Host device example code is running.

USB Multi-Role Device Design By Example

46

Figure 3-13. Display from Target PC “Buttons and Lights” program

Simple Example #5 – Standalone BAL Device
 To round out this chapter, I wanted to introduce you to another tool –
scanwrap. Scanwrap takes a binary file and creates a scan record from it. This can
be loaded into the I2C EEPROM directly. I recommend programming the EZ-OTG
board so that we can use it in subsequent examples. Dipswitches 6, 5, 4, and 3
should be the only ones ON to enable the EEPROM. Double click on bash_env in
the se3 directory to open a bash window. Enter “scanwrap se3.bin scan_se3.bin
0x1000” then program the EEPROM using “qtui2c scan_se3.bin f.” Once the
EEPROM is programmed, the mezzanine board becomes a standalone “Buttons and
Lights” device – we shall call this simple example #5 (se5), and it will be used in other
examples later in this book.

Chapter Summary
 We moved through four simple examples to get used to the EZ-Host/EZ-OTG
tools and development environment. We built a standard HID device, and used a PC
Host application-program with standard Windows class-drivers to test it.

 Building a USB device with the EZ-Host/EZ-OTG components is straight
forward since BIOS handles all of the low-level USB details for us. We can focus
upon the application layer details. In this example we only had a single device and
used the other SIE connection for the debugger – later examples will support multiple
independent devices on two independent USB segments.

 In the next chapter, we will build a host application.

 Chapter 4: Developing a host application

 47

Chapter 4: Developing a host application

A USB host controller has more work to do than a USB device controller, a
lot more. USB is a master-slave bus and the host, as master, will control all of the
communications. This will involve detecting and identifying connected devices, and
then scheduling USB transfers as defined by the requirements of each device. The
structure of a host application program is the same as a device application program
(refer to Figure 3-3) so we can focus on the functionality of our application program
and allow Frameworks and BIOS to handle all of the low-level details of enumeration
and scheduling. Since the Frameworks code is pre-written and tested it will not take
too much extra effort on our part to write a host applications program.

 We shall work through a “Buttons and Lights” host example – essentially
replacing the PC and the Visual Basic program that was demonstrated in the
previous chapter. We will use the other mezzanine board, and it will talk to the
standalone Buttons and Lights HID device we built in example se3.

 Most of this chapter describes the inner workings of the Frameworks host
controller firmware in sufficient detail that you could modify or tune some parts of it
for your particular application. In general, this will NOT be required and many
developers will just use Frameworks as is, so these readers may skim the first half of
this chapter.

Key Host Controller Concepts
 Figure 4-1 shows a comparison between a re-programmable USB host
controller, such as a PC, and an embedded host controller as would be implemented
using the EZ-Host/EZ-OTG components. The Frameworks code uses many of the
same concepts as a Windows-based host implementation.

USB Multi-Role Device Design By Example

48

Ap_DriverAp_DriverAp_Driver

ApApAp

Device
Driver

PC
Hardware

Application
Program

Device
Driver

Host
Controller

Driver

Device
Enumeration

Device
Object

USB Device

Device
Driver

Read
Write

URBs

TD_List

EZ-Host
or

EZ-OTG

Host
Controller

Driver

Device
Enumeration

Device
Object

USB Device

Ap_Driver

URBs

TD_List

Re-programmable Host Embedded Host

Application

Hardware

Open

Ap_DriverAp_DriverAp_Driver

ApApAp

Device
Driver

PC
Hardware

Application
Program

Device
Driver

Host
Controller

Driver

Device
Enumeration

Device
Object

USB Device

Device
Driver

Read
Write

URBs

TD_List

EZ-Host
or

EZ-OTG

Host
Controller

Driver

Device
Enumeration

Device
Object

USB Device

Ap_Driver

URBs

TD_List

Re-programmable Host Embedded Host

Application

Hardware

Open

Figure 4-1. A re-programmable host and an embedded host have similar structure

 First focus on the USB device being added to the PC at the bottom left of
Figure 4-1. The PC will enumerate this device to discover which device driver it
should use to manage it. I am assuming the simplest case here where the USB
device has a single interface. Many devices have multiple interfaces and will
therefore cause multiple device drivers to be loaded by the PC host. We will consider
this case later, so, for now, assume that only one device driver is loaded. The
operating system will call Start_Device() in the device driver, and a device object will
be created. This device object describes all of the attributes of the USB device in a
format that is useful for the operating system.

 In the PC environment the process stops here. We have a USB device
added and a device driver loaded to support this device. The device driver typically
doesn’t do anything unless requested by an application program, so lets start an
applications program that will use this new USB device. Windows has a
comprehensive scheme involving GUIDs and Plug-And-Play system tables that allow
a user program to rendezvous with the device driver and thus open it (i.e. use
Createfile to return a file handle). This scheme, although complex, is very flexible
since it allows multiple user programs to share device drivers.

 Chapter 4: Developing a host application

 49

 Once the Windows application program has a handle to the device driver it
can issue ReadFile, WriteFile, and IOControl commands. The device driver will, in
turn, create USB Request Blocks (URBs) that it passes to the USB host Controller
driver. The windows host controller driver will accept URBs from many device drivers,
and it creates a Transfer Descriptor List (TD_List) that defines the USB operations
that must be executed to implement the URBs. USB transfers are scheduled in
frames that are 1 msec apart. The host controller software is preparing the next
frame while the host controller hardware is implementing the current frame. The host
controller driver passes this TD_List to a host controller component that uses
specialized hardware to process this list.

 The host controller component processes the TD_List and updates status
information indicating the success or failure of each transfer. The host controller
driver will use this information as it builds the TD_List for the next frame.

 There are three standard USB host controller interfaces, UHCI (Universal
Host Controller Interface), OHCI (Open HCI) and EHCI (Enhanced HCI). UHCI and
OHCI implement 12 Mb/s signaling while EHCI also includes 480 Mb/s signaling and
the protocol enhancements, such as PING and SPLIT, that were added in the USB
2.0 Specification. All three interfaces are documented at www.usb.org.

 Windows implements the ReadFile system call as a blocking call. This
means that the application program must wait for the read to complete before
continuing. So it waits for the device driver to issue a URB, it waits while the TD_List
is being built and sent, and it waits while the device is returning NAKs. Eventually the
device will send data and the corresponding TD will be marked complete. This
propagates all of the way up the stack and the application program can continue.

 The operation of an EZ-Host/EZ-OTG embedded host is similar.
Frameworks will identify a newly attached device and will create a Device Object for
it. Frameworks will then try to match this device object with a list of device drivers
that it owns – if a match is found then Frameworks will call Start_Device() in this
driver. In an embedded host the application program and device driver are not
separate entities, they are combined into a single module which, for explanation
purposes, I shall call Ap_driver. The implication for us, since we want to write a host
application program, is that we must follow a certain structure – this will be covered in
detail in an example later in this chapter.

 An embedded host can contain many Ap_driver modules and can thus
support many different devices. Since the code space on an embedded host is
typically limited, the embedded host will declare a targeted peripheral list that
describes the devices that it can support. Our first example supports a single device
while later examples will support more.

USB Multi-Role Device Design By Example

50

 Once our ap_driver module starts running it will create URBs that it forwards
to Frameworks for processing. A Frameworks URB contains a callback routine that
ap_driver specifies. Once the URB is completed, this routine is called. The ap_driver
can do other processing in the meantime. Frameworks builds a TD_List just like the
PC host does – Frameworks uses the scheduling algorithms defined in the UHCI
specification. Frameworks passes the TD_List to BIOS for processing, and BIOS will
later return the list with updated status. BIOS uses specialized hardware in the EZ-
Host/EZ-OTG components to transfer the contents of the TD_List onto the USB
wires. Frameworks, meanwhile, creates a TD_List for the next frame.

Frameworks Host Controller Implementation
 Host applications developers can skip this section; this section goes into
more detail on how the Frameworks host controller firmware is implemented. This
section covers key Frameworks data structures and describes memory and buffer
allocation. If you are reading through the many source files in the Common directory
with the intentions of knowing the finer details, then you will find this section most
useful.

 The Frameworks host controller firmware has to manage a great deal of
information. Data blocks are routinely created, passed through many levels of
software and then destroyed. Rather than continually copying data from one place to
the next, Frameworks defines fixed format buffers that it allocates and de-allocates.
The lifetime of a data buffer varies greatly, so a linked-list is used so that allocations
and de-allocations need not occur in order. This linked-list implementation has the
side benefit that all allocations and de-allocations take the same fixed time to execute
– an important attribute in an embedded real-time system. Frameworks keeps data-
copying to an absolute minimum and manages data pointers extensively. Figure 4-2
shows the approximate size and number of fixed-format buffers, all of which are
initialized as “free.” Different application programs will use differing numbers of data
buffers, so the count for each buffer type is defined in fwxcfg.h.

 Chapter 4: Developing a host application

 51

Device Object
FWX_NUMSUPPORTED_DEVICES = 3

USB Request Block
FWX_NUMSUPPORTED_URBS =10

Setup Buffer
FWX_NUMSUPPORTED_SETUPBUFFERS =10

Transfer Descriptor
TD_MAX_TDS =16

Large USB Request Block
FWX_NUMSUPPORTED_LARGEURBS = 2

Linked-
List

Pointers

Device Object
FWX_NUMSUPPORTED_DEVICES = 3

USB Request Block
FWX_NUMSUPPORTED_URBS =10

Setup Buffer
FWX_NUMSUPPORTED_SETUPBUFFERS =10

Transfer Descriptor
TD_MAX_TDS =16

Large USB Request Block
FWX_NUMSUPPORTED_LARGEURBS = 2

Linked-
List

Pointers

Figure 4-2. Variable Data uses pre-allocated, fixed-format buffers.

 Following a power-on, Frameworks will look for devices attached to its root
hubs. In our example we will continue to use SIE2 as a debugger connection, so we
will only consider a single host example using SIE1 (dual host is covered in a later
chapter). If a device is found then Frameworks will create a device object, shown in
Figure 4-3, and will start to fill in information about the device.

USB Multi-Role Device Design By Example

52

typedef struct USB_DEVICE {
 uint8 sie;
 uint8 port;
 uint8 address;
 bool direct_connect;
 uint8 speed;
 uint8 configuration;
 uint8 num_endpoints;
 uint8 endpoint_max_pkt[8];
 uint8 enum_state;
 uint8 enum_retry;
 uint8 otg_attributes; /* bitmap. */
 struct CLASS_DRIVER *driver;
 USB_DEVICE_DESCRIPTOR dev_descr;
 USB_CONFIG_DESCRIPTOR cfg_descr;
 USB_INTERFACE_DESCRIPTOR inf_descr;
 uint16 enum_data;
 uint8 new_address; /* temporary. */
} USB_DEVICE;

Figure 4-3. Format of a Frameworks Device Object

 Frameworks will use USB Request Blocks (URB) to get information from the
new device. The format of this key data structure is shown in Figure 4-4. Our
applications code will use the same mechanism to request services from
Frameworks.

typedef struct URB {
 struct USB_DEVICE *dev; /* pointer to associated USB device */
 uint8 dir; /* in or out end point */
 uint8 usb_dev_addr; /* device_address */
 uint8 endpoint; /* end point number */
 uint8 speed; /* 0 = full or 1 = low speed */
 uint8 type; /* end point type. iso, intr, control, bulk */
 void *transfer_buffer; /* associated data buffer */
 int16 buffer_length; /* data buffer length */
 int16 actual_length; /* actual buffer length */
 int16 bandwidth; /* allocated bandwidth */
 uint8 *setup_packet; /* setup packet (control only) */
 int16 num_of_packets; /* number of packets in this request (iso only) */
 int16 interval; /* polling interval (irq only) */
 int16 error_count; /* number of errors in this transfer */
 uint16 status; /* returned status */
 PFNURBCALLBACK callback; /* callback for URB completion */
 struct URB *next; /* To facilitate easy linking of URBs. */
} URB;

Figure 4-4. Format of a Frameworks USB Request Block (URB)

 Frameworks will create one, or more, Transfer Descriptors (TD) from this
URB. The format of a TD exactly matches the format used by the EZ-Host/EZ-OTG
hardware and contains several bit fields as shown in Figure 4-5.

 Chapter 4: Developing a host application

 53

typedef struct TD {
 uint16 base_address; /* Base Address of Data Buffer */
 uint16 length : 14; /* Port Number /Data Length */
 uint16 port_num : 2;
 uint16 ep : 4;
 uint16 pid : 4;
 uint16 dev_address : 8;
 uint8 control;
 uint8 status;
 uint16 retry_cnt : 2; /* Retry Count */
 uint16 retry_xfer_type : 2;
 uint16 retry_active : 1;
 uint16 unused_3 : 3;
 uint16 residue : 8; /* Residue */
 struct TD *next_TD; /* Points to Next TD Address */
 URB *urb; /* Pointer to URB origin */
 uint16 ctrl_next_state; /* control pipe state */
 uint16 interval_reference; /* frame count when TD was last scheduled */
 uint16 nak_retry_count; /* Limit times a TD is retried after NAK. */
} TD;

Figure 4-5. Format of EZ-Host/EZ-OTG Transfer Descriptor

 Frameworks will place (a) token(s) for this/these TD(s) onto one of the lists
marked NEW in Figure 4-6; it will choose the list that matches the USB packet type.
We are now at the heart of the Frameworks host controller firmware. Figure 4-6
shows the multiple input Transfer Descriptor lists (TD_lists) and the single output TD
list that Frameworks uses to schedule transfers on the USB wires. Multiple lists are
required to manage the scheduling algorithm defined by the UHCI specification –
isochronous transfers have the highest priority followed by ready interrupt transfers,
and these are allowed up to 90% of the bus bandwidth. If there is time available in
the frame then control and bulk transfers will be included.

USB Multi-Role Device Design By Example

54

From BIOS

Iso

Int

Control

Bulk In

BulkOut

Int

Control

Bulk In

BulkOut

Iso

Int

Control

Bulk In

BulkOut

Iso

Int

Control

Bulk In

BulkOut

2

3

3

1

4

4

4

4

4

4

Status NewRetry NextFrame
Output ListInput Lists

To BIOS

Notes: 1 = if poll time exceeded
2 = if not completed
3 = if NAK or not scheduled
4 = if time available in Frame

Status TD_List is NextFrame TD_List from previous frame updated by hardware

From BIOS

Iso

Int

Control

Bulk In

BulkOut

Int

Control

Bulk In

BulkOut

Iso

Int

Control

Bulk In

BulkOut

Iso

Int

Control

Bulk In

BulkOut

2

3

3

1

4

4

4

4

4

4

Status NewRetry NextFrame
Output ListInput Lists

To BIOS

Notes: 1 = if poll time exceeded
2 = if not completed
3 = if NAK or not scheduled
4 = if time available in Frame

Status TD_List is NextFrame TD_List from previous frame updated by hardware

Figure 4-6. Scheduling Transfers in a frame

 Let us assume that the EZ-Host/EZ-OTG has just completed a series of data
transfers on USB and that BIOS has updated the status information in the TD_List; I
call this the Status_List in Figure 4-6. Frameworks first parses the Status_List looking
for successful transfers (it executes the matching callback) or for failed transfers (it
places the TD on to the matching Retry_List). It then builds the NextFrame TD_List
by adding active items from the New or Retry lists. It processes the lists in the order
shown (from top to bottom) and stops either when it has calculated that the frame will
be full, or it reaches the end of the input lists. Frameworks then gives this TD_List to
BIOS so that it will use specialized hardware within the EZ-Host/EZ-OTG
components to move these onto the USB wires. BIOS collects status from these
transfers and we repeat this sequence (i.e. re-read this paragraph) until the host is
powered down.

 So lets elevate from these low-level scheduling details a moment. How did
we get here? Yes, an initialization task within Frameworks detected a device present
on its root hub and sent URBs to discover the identity of the device. Sending URBs
took us to TDs, which took us to scheduling and into the heart of the Frameworks

 Chapter 4: Developing a host application

 55

host controller firmware. Notice in the URB structure (shown in Figure 4-4) that the
caller specifies a callback routine that is used once the request is completed. The
application programmer does not need to know any of these low-level details since
the callback function will eventually be called.

Device Identification
 Frameworks will use a series of URBs to enumerate the device. It will
typically use GetDescriptor(Device), GetDescriptor(ConfigurationHeader),
GetDescriptor(Configuration) and will use this gathered information to select a device
driver, or in our case, an Ap_driver. All embedded hosts will support a targeted
peripherals list, and Frameworks implements this list as an array of registered
drivers. Each registered driver is defined by a CLASS_DRIVER structure, shown in
Figure 4-7, and this contains pointers to our Ap_driver code which is shown in Figure
4-8.

typedef struct CLASS_DRIVER {
 uint8 class;
 uint8 subclass;
 uint8 if_class; /* Interface class. */
 uint8 if_subclass; /* Interface subclass. */
 uint8 protocol;
 uint16 vendor_ID;
 uint16 product_ID;
 uint16 (*start)(USB_DEVICE *dev); /* Callback for Start_Device */
 uint16 (*stop)(USB_DEVICE *dev); /* Callback for Stop_Device */
 void (*run)(USB_DEVICE *dev); /* Callback for idle time processing */
 uint16 (*ioctl)(USB_DEVICE *, uint16, uint16, uint16);
 uint16 id; /* System wide unique device ID. */
} CLASS_DRIVER;

Figure 4-7. Ap_driver is described by a Class_Driver structure

 Note that the structure of Ap_driver is the familiar three-task model: an
Init_Task (that sets up the Idle_Task and the CallBacks), an Idle_Task (that looks for
work to do), and a collection of CallBack routines that do the work.

USB Multi-Role Device Design By Example

56

Init_Task

Idle _Task

CallBack
Tasks

se5_Start

se5_Run

se5_Stop

se5_IoCtl

other

Init_Task

Idle _Task

CallBack
Tasks

se5_Start

se5_Run

se5_Stop

se5_IoCtl

other

Figure 4-8. Structure of Ap_driver code

 The first time our application program knows about the device that it needs to
manage is when it receives a call from Frameworks to our Init_Task – the low-level
enumeration and driver matching has already been done by Frameworks so we can
start our application straight away.

Simple Example #6 – Buttons and Lights Host
 The host-side application for our “Buttons and Lights” example is
straightforward. We have to create a task that polls the “Buttons and Lights” USB
device for input reports, and we have to create a task to monitor local button presses.
A single interrupt URB with a callback will wait for, and alert us to, input reports, and
we’ll use the same button callback routine that we used in the device example.
Updating the seven-segment displays is also easy – the local one is a call into the
Frameworks IO subsystem and the remote update is a single URB posted to
Frameworks. The code for the se6 application is shown in Figure 4-9. As you can
see, most of the code deals with initialization.

 Chapter 4: Developing a host application

 57

/* File: app.c for Simple Example 6
 * This is a HOST running a BAL program
 */
#include "fwx.h"
#include "board.h"
#include "app.h"
/* Application data. */
// Provide 1 byte lights report on a button change, receive a 1 byte buttons report
uint8 buttons_report ATTR_USB_XFER_BUF_SECTION;
uint8 lights_report ATTR_USB_XFER_BUF_SECTION;
int DisplayValue;

// My driver will need two URBs - I allocate them in Start_Driver and re-use them
URB *buttons_urb, *lights_urb;
bool lightsUrbInUse = FALSE;

// Describe my driver is a Frameworks compatible format. Only one may be active
bool DriverInUse = FALSE;
CLASS_DRIVER const se6_driver = {
 0, // class
 0, // subclass
 3, // if_class
 0, // if_subclass
 0, // protocol
 0x4242, // vendor_ID
 0xc003, // product_ID
 se6driver_start, // (*start)(USB_DEVICE *dev)
 se6driver_stop, // (*stop)(void)
 se6driver_run, // (*run)(void)
 se6driver_ioctl, // (*ioctl)(USB_DEVICE *, uint16, uint16, uint16)
};

uint16 show_error(uint16 error) {
// Helper routine to display errors, should not get any!
 cpld_set_led(ERROR_LED);
 cpld_set_ssd(error);
 return ERROR;
 }

// Declare my Init_Task - this is Driver_Start
uint16 se6driver_start(USB_DEVICE *dev) {
// Frameworks will pass me a driver object for the BAL HID device
// Only allow one copy of the driver to run
 if (DriverInUse) return ERROR;
 DriverInUse = TRUE;
// Get two URBs needed for the interrupt reports
 buttons_urb = alloc_URB(FALSE, sizeof(buttons_report));
 if (!buttons_urb) return show_error(0xA);
 lights_urb = alloc_URB(FALSE, sizeof(lights_report));
 if (!lights_urb) return show_error(0xB);
// I have two URBs, initialize them
// NOTE: since I know the device then I know attributes such as endpoint/polling interval
// In the general case I would parse the descriptors to discover this information
// Initialize those elements of the urb that are constant
 lights_urb->dev = dev;
 lights_urb->dir = TD_CTRL_DIR_OUT;
 lights_urb->usb_dev_addr = dev->address;
 lights_urb->endpoint = 2; // See NOTE
 lights_urb->speed = dev->speed;
// lights_urb->type = USB_INTERRUPT_TRANSFER_TYPE;
 lights_urb->type = USB_BULK_TRANSFER_TYPE;
 lights_urb->interval = 100; // See NOTE

USB Multi-Role Device Design By Example

58

// Initialize those elements of the urb that are constant
 buttons_urb->dev = dev;
 buttons_urb->dir = TD_CTRL_DIR_IN;
 buttons_urb->usb_dev_addr = dev->address;
 buttons_urb->endpoint = 1; // See NOTE
 buttons_urb->speed = dev->speed;
 buttons_urb->type = USB_INTERRUPT_TRANSFER_TYPE;
 buttons_urb->interval = 100; // See NOTE
 buttons_urb->transfer_buffer = &buttons_report;
 buttons_urb->buffer_length = sizeof(buttons_report);
 buttons_urb->callback = (PFNURBCALLBACK) buttons_report_received;
// Post the buttons_urb to wait for an input report from the device
 if (td_submit_URB(buttons_urb) == ERROR) {
 release_URB(buttons_urb);
 return show_error(0xC);
 }
 else return SUCCESS;
 }

// Declare Idle_Task - no work to do, all handled via callbacks

// Declare Callback routines - the three required driver routines first
uint16 se6driver_stop(USB_DEVICE *dev) {
 if (!DriverInUse) return ERROR;
 DriverInUse = FALSE;
// Release any system resources we have
 if (buttons_urb) {
 td_clear_URB(buttons_urb); // Remove from td processor
 release_URB(buttons_urb); // Deallocate the urb
 }
 if (lights_urb) {
 if (lightsUrbInUse) td_clear_URB(lights_urb);
 release_URB(lights_urb);
 }
 return SUCCESS;
 }

void se6driver_run(USB_DEVICE *dev) {
// Nothing to do in this IdleTask
 }

uint16 se6driver_ioctl(USB_DEVICE *dev, uint16 cmd, uint16 d1, uint16 d2) {
// Nothing to do since no IOCTLs defined
 if (DriverInUse) return SUCCESS;
 return ERROR;
 }

// Handle local button presses
void app_button_handler(BUTTONbutton) {
 switch (button) {
 case BTN_UP: if (++DisplayValue > 9) DisplayValue = 0; break;
 case BTN_DOWN: if (--DisplayValue < 0) DisplayValue = 9; break;
 case BTN_LEFT: DisplayValue = 0; break;
 case BTN_RIGHT: DisplayValue = 9; break;
 default: break;
 }
 cpld_set_ssd(DisplayValue);
// Need to keep the Device display in sync
 lights_report = DisplayValue & 0x0F;
 if (!lightsUrbInUse) {
 lights_urb->transfer_buffer = &lights_report;
 lights_urb->buffer_length = sizeof(lights_report);

 Chapter 4: Developing a host application

 59

 lights_urb->callback = (PFNURBCALLBACK) lights_report_sent;
 if (td_submit_URB(lights_urb) == ERROR) {
 release_URB(lights_urb);
 show_error(0xD);
 }
 else lightsUrbInUse = TRUE;
 }
 }

// Handle remote button presses
void buttons_report_received(URB *urb) {
 if (urb->status == SUCCESS) {
// Device has just sent me a button press, treat it as a local button press
 app_button_handler(buttons_report);
// Frameworks will continue to monitor INT-IN, I don't need to resubmit the urb
 }
 else {
// There was an error on the urb, so Frameworks will stop scheduling it
// I should try and resubmit it to keep looking for INT-IN
 urb->transfer_buffer = &buttons_report;
 urb->buffer_length = sizeof(buttons_report);
 urb->callback = (PFNURBCALLBACK) buttons_report_received;
 if (td_submit_URB(urb) == ERROR) {
 release_URB(urb);
 show_error(0xC);
 }
 }
 }

// Remote lights update report has been sent
void lights_report_sent(void) {
// Now OK to reuse lights urb
 lightsUrbInUse = FALSE;
 }

Figure 4-9. Host application code for simple example #6

 There are other files in the se6 directory. The fwxcfg.h file selects a lot more
features from the Frameworks subsystem. You can open a bash window and enter
“make” to build an executable file. Just as before, open another bash window for
“cy16-elf-libremote -u” and enter “cy16-elf-gdb se6” in the first bash
window to start the debugger. You should have your hardware set up as shown on
Figure 4-10. We are debugging se6 on the EZ-Host mezzanine board; we are using
a PC to control the EZ-Host board via a USB cable connected to SIE2; the EZ-OTG
mezzanine board with se5 installed in EEPROM will operate as a USB BAL device.

 Clear the debugger breakpoints and click “continue.” Now press the buttons
on the host mezzanine card or the device mezzanine card and watch the seven-
segment displays on each of them change.

 Our first host application program.

USB Multi-Role Device Design By Example

60

CPU

CPU

Firmware Development PC

EZ-Host with
BAL Host application

EZ-OTG with
BAL Device application

CPU

CPU

Firmware Development PC

EZ-Host with
BAL Host application

EZ-OTG with
BAL Device application

Figure 4-10. Testing the se6 host example

Chapter Summary
 The structure of a host application program is the same as the structure of a
device application program. The application program focuses on the design logic
that we want to implement, and all of the low-level USB interaction, including device
identification and transaction scheduling, is handled by Frameworks. We looked
inside the operation of the Frameworks host controller firmware and saw how it
schedules transfers using pre-allocated, fixed-format buffers and the UHCI algorithm.

 In the next chapter we will combine the host and device application programs
into one program to build a “two-headed” application that supports host and device
functionality concurrently. You will be impressed with what this subsystem can do.

 Chapter 5: Concurrent operation as a host and device

 61

Chapter 5: Concurrent operation as a host and device

 As it happens, the concurrent operation of the EZ-Host/EZ-OTG as a host
and as a device is simpler to explain than the role-changing operation of a dual-role
device, so I decided to cover this topic first. In reality we have already used this
mode of operation of the EZ-Host/EZ-OTG since the debugger connection that we
have been using is a USB device! But this debug channel has been handled solely
by low-level BIOS routines and has therefore not been visible to our applications
programs. In this chapter our example program will use both SIEs and we will need
to find another method to attach our debugger (several are available).

 Figure 5-1 shows the general arrangement of an EZ-Host/EZ-OTG
application as a host and as a device. Note that, from this overview, it resembles a
hub.

EZ-Host/EZ-OTG

USB
Device

USB
Host

PC Host

IO Device

Upstream

Downstream

EZ-Host/EZ-OTG

USB
Device

USB
Host

PC Host

IO Device

Upstream

Downstream

Figure 5-1. Concurrent operation as a host and as a device

 The host+device and a hub are similar in that they both have an upstream
port facing a PC and a downstream port facing a device. Their operation is quite
different however, but we will take advantage of this similarity in a later example.

 I am reusing my Buttons and Lights example for this chapter. It has the
advantage of being a simple application so that you can focus on the methods and
process. You should already be familiar with its operation, so you will be able to
focus on the new elements of the examples. It is also readily extensible to other
class examples so it is a good learning vehicle. The example we shall build in this
chapter is shown in the center of Figure 5-2.

USB Multi-Role Device Design By Example

62

CPU

CPU

PC Host running Visual Basic BAL, se4

EZ-OTG mezzanine board
running BAL device from se5

EZ-Host mezzanine board
running BAL device from se3

and BAL host from se6

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INC

DEC

CPUCPU

CPUCPU

PC Host running Visual Basic BAL, se4

EZ-OTG mezzanine board
running BAL device from se5

EZ-Host mezzanine board
running BAL device from se3

and BAL host from se6

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INC

DEC

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INCINC

DECDEC

Figure 5-2. Buttons and Lights example with two hosts and two devices

 We will use a PC running the Visual Basic Buttons and Lights program from
Chapter 3. We will also use an EZ-OTG mezzanine board running as a Buttons and
Lights device from Chapter 3 (= se5). Our target will be the EZ-Host mezzanine
board running both the BAL host and the BAL device applications programs. We
have most of the code for our host+device example, so we “just” have to integrate it
into a single application program.

 Our first design decision comes when we look at the target for our example.
The mezzanine board only has one set of buttons and one seven segment display.
Should I share the hardware amongst the two programs or should I add more
hardware? This is a trivial example of a more complex issue – should the host
application program and the device application program be independent of each
other or should they cooperate to solve the current design challenge? We are in total
control here – we can simply pass packets on the upstream segment to the
downstream segment (similar to a hub) or we could process the data in both
directions and selectively forward packets in either direction (an intelligent hub?).

 In this first example I decided to share the host+device lights but not the
buttons. The seven-segment display will be updated from the PC host OR from the
BAL device. A button press will be passed to the PC host but not to the BAL device.
This design decision will result in the three sets of buttons (PC host, host+device and

 Chapter 5: Concurrent operation as a host and device

 63

device) each having a different effect. In the next example I shall change the
algorithm such that all three displays stay in sync.

Simple Example #7 – Concurrent BAL Host and Device
 We wrote the code for the Buttons and Lights host program in Chapter 4 –
we will reuse it. We also wrote the code the for Buttons and Lights device program in
Chapter 3 – we need to change this so that it uses SIE2 rather than SIE1 (since this
is being used by the host program). The combined structure of Init_Task, Idle_Task
and CallBack_Tasks is shown in Figure 5-3. I also edited fwxcfg.h in the se7
directory to include host and device features from Frameworks.

/* File: app.c. Simple Example 7
 * BAL host+device, host on SIE1, device on SIE2
 */

#include "app.h"
#include "sie1.h"

/* Application data. */
// Declare the Host data first
// Provide a 1 byte lights report on a button change, receive a 1 byte buttons report
uint8 host_buttons_report ATTR_USB_XFER_BUF_SECTION;
uint8 host_lights_report ATTR_USB_XFER_BUF_SECTION;
int DisplayValue = 0;

// Support both host ports on SIE1
// Port changes are detected in an ISR and serviced in the IdleTask
// In this example se5 is directly connected to se6
// It can be attached on either host port (try it!)
static bool port_change[2] = {FALSE, FALSE};
static bool direct_connect_present[2] = {FALSE, FALSE};

// My driver will need two URBs - I allocate them in Start_Driver and re-use them
URB *buttons_urb, *lights_urb;
bool lightsUrbInUse = FALSE;

// Describe my driver is a Frameworks compatible format. Only one may be active
bool DriverInUse = FALSE;
CLASS_DRIVER const se7_driver = {
 0, // class
 0, // subclass
 3, // if_class
 0, // if_subclass
 0, // protocol
 0x4242, // vendor_ID
 0xc003, // product_ID
 se7driver_start, // (*start)(USB_DEVICE *dev)
 se7driver_stop, // (*stop)(void)
 se7driver_run, // (*run)(void)
 se7driver_ioctl, // (*ioctl)(USB_DEVICE *, uint16, uint16, uint16)
};

// Define how the Host and Device share buttons
bool share_local_buttons = FALSE; // Keep buttons private
bool passthru_downstream_buttons = FALSE; // Keep buttons private

// Now declare the device data, see se3 for more details

USB Multi-Role Device Design By Example

64

bool Configured = FALSE;
extern uint8 strings_descriptor;
uint8 device_buttons_report ATTR_USB_XFER_BUF_SECTION;
uint8 device_lights_report ATTR_USB_XFER_BUF_SECTION;
USBTXRXINFO report_descriptor_info, buttons_report_info, lights_report_info;
bool buttons_report_inuse = FALSE; // I recycle the same buffers
PFNINTHANDLER BIOSConfigurationChange, BIOSStandardRequestHandler,
BIOSClassRequestHandler;

USB_DEVICE_DESCRIPTOR const device_descriptor ATTR_SIE1_DESCR_SECTION = {
 18, 1, 0x200, 0, 0, 0, 64, 0x4242, 0xc003, 0x100, 1, 2, 0, 1
 };

uint8 const report_descriptor[] ATTR_SIE1_DESCR_SECTION = {
 6, 0, 0xFF, // Usage_Page (Vendor Defined)
 9, 1, // Usage (IO Device)
 0xA1, 1, // Collection (Application)
 0x19, 1, // Usage_Minimum (1)
 0x29, 8, // Usage_Maximum (8)
 0x15, 0, // Logical_Minimum (0)
 0x25, 1, // Logical_Maximum (1)
 0x75, 1, // Report_Size (1)
 0x95, 8, // Report_Count (8)
 0x81, 2, // Input (Data,Var,Abs) = Buttons
 0x19, 1, // Usage_Minimum (1)
 0x29, 8, // Usage_Maximum (8)
 0x91, 2, // Output (Data,Var,Abs) = Lights
 0xC0 // End_Collection
 };

USB_ALL_DESCRIPTORS const configuration_descriptor ATTR_SIE1_DESCR_SECTION = {
 { /* config_descriptor header */
 9, 2, sizeof(USB_ALL_DESCRIPTORS), 1, 1, 0, 0xC0, 1 },
 { /* interface */
 9, 4, 0, 0, 2, 3, 0, 0, 3 },
 { /* class_descriptor */
 9, 0x21, 0x100, 0, 1, 0x22, sizeof(report_descriptor) },
 { /* EP1_In */
 7, 5, 0x81, 3, 8, 100 },
 { /* EP2_Out */
 7, 5, 2, 3, 8, 100 }
 };

uint16 show_error(uint16 error) {
// Helper routine to display errors, should not get any!
 cpld_set_led(ERROR_LED);
 cpld_set_ssd(error);
 return ERROR;
 }

// Declare my Init_Tasks - there are several in this example
// sie1_init getc called early and I initialize sie1 as a host
// sie2_init gets called early - I wait and initialize sie2 in App_Init
// se7driver_start is called to initialize Host side once BAL device has been enumerated
// App_Init is called to initialize the Device side of this example

void sie1_init(void) {
// Initialise the Status LEDs
 cpld_set_led(HOST_LED);
 cpld_set_led(SESSION_ACTIVE_LED);
 cpld_clr_led(SLAVE_LED);
 cpld_clr_led(ERROR_LED);
// Now spin up the SIE as a Host

 Chapter 5: Concurrent operation as a host and device

 65

 device_map_init();
 WRITE_REGISTER(HUSB_pEOT_ADR, 1200);
 husb1_init();
 INPLACE_OR(HOST1_IRQ_EN_REG, (VBUS_IRQ_EN | A_CHG_IRQ_EN | B_CHG_IRQ_EN));
 }

void sie2_init(void) {
// Frameworks gives me an opportunity to initialize the sie here, I wait until app_init()
 }

uint16 se7driver_start(USB_DEVICE *dev) {
// Frameworks will pass me a driver object for the BAL HID device
// Only allow one copy of the driver to run
 if (DriverInUse) return ERROR;
 DriverInUse = TRUE;
// Get two URBs needed for the interrupt reports
 buttons_urb = alloc_URB(FALSE, sizeof(host_buttons_report));
 if (!buttons_urb) return show_error(0xA);
 lights_urb = alloc_URB(FALSE, sizeof(host_lights_report));
 if (!lights_urb) return show_error(0xB);
// I have two URBs, initialize them
// NOTE: since I know the device then I know attributes such as endpoint/polling interval
// In the general case I would parse the descriptors to discover this information
// Initialize those elements of the urb that are constant
 lights_urb->dev = dev;
 lights_urb->dir = TD_CTRL_DIR_OUT;
 lights_urb->usb_dev_addr = dev->address;
 lights_urb->endpoint = 2; // See NOTE
 lights_urb->speed = dev->speed;
// lights_urb->type = USB_INTERRUPT_TRANSFER_TYPE;
 lights_urb->type = USB_BULK_TRANSFER_TYPE;
 lights_urb->interval = 100; // See NOTE
// Initialize those elements of the urb that are constant
 buttons_urb->dev = dev;
 buttons_urb->dir = TD_CTRL_DIR_IN;
 buttons_urb->usb_dev_addr = dev->address;
 buttons_urb->endpoint = 1; // See NOTE
 buttons_urb->speed = dev->speed;
 buttons_urb->type = USB_INTERRUPT_TRANSFER_TYPE;
 buttons_urb->interval = 100; // See NOTE
 buttons_urb->transfer_buffer = &host_buttons_report;
 buttons_urb->buffer_length = sizeof(host_buttons_report);
 buttons_urb->callback = (PFNURBCALLBACK) buttons_report_received;
// Post the buttons_urb to wait for an input report from the device
 if (td_submit_URB(buttons_urb) == ERROR) {
 release_URB(buttons_urb);
 return show_error(0xC);
 }
 else return SUCCESS;
 }

void app_init(void) {
// This is se3 but using SIE2
// Update the descriptor pointers that BIOS uses
 WRITE_REGISTER (SUSB2_DEV_DESC_VEC, (PFNINTHANDLER) &device_descriptor);
 WRITE_REGISTER (SUSB2_CONFIG_DESC_VEC, (PFNINTHANDLER) &configuration_descriptor);
 WRITE_REGISTER (SUSB2_STRING_DESC_VEC, (PFNINTHANDLER) &strings_descriptor);
// Chain a routine before BIOS's standard request handler
 BIOSStandardRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB2_STANDARD_INT*2);
 WRITE_REGISTER (SUSB2_STANDARD_INT*2, (PFNINTHANDLER) &InterceptStandardRequest);
// Add a Class Request Handler
// Actually, since I stall all requests anyway, I may as well let BIOS do that!
// BIOSClassRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB2_CLASS_INT*2);
// WRITE_REGISTER (SUSB2_CLASS_INT*2, (PFNINTHANDLER) &HandleClassRequest);

USB Multi-Role Device Design By Example

66

// We need to know when a Set_Configuration is received
 BIOSConfigurationChange = (PFNINTHANDLER) READ_REGISTER (SUSB2_DELTA_CONFIG_INT*2);
 WRITE_REGISTER (SUSB2_DELTA_CONFIG_INT*2, (PFNINTHANDLER) &SetConfigurationRequest);
// Now initialize SIE2, this will result in it enumerating with the PC Host
 susb_init(SIE2, USB_FULL_SPEED);
 }

/* Declare the Idle_Tasks */
// There are several, but the only one that does work is sie1_idle
// During Idle we look for device connect/disconnects on the host ports
void sie1_idle(void) {
 if (port_change[0] || port_change[1]) sie1_check_for_connected_devices();
 }
void sie2_idle(void) {
 }
void se7driver_run(USB_DEVICE *dev) {
 }

/* Declare Callback routines */
void sie1_check_for_connected_devices(void) {
 int16 port, reg;
// Disable the insert/remove interrupts
 INPLACE_AND(DEV1_IRQ_EN_REG, ~(A_CHG_IRQ_EN));
// Check for connected devices. */
 for (port = 0; port < 2; ++port) {
 reg = husb_reset(20, port);
 if (!reg & 2) enumerate_device(SIE1, port, &direct_connect_present[port],
sie1_enumeration_notify);
 port_change[port] = FALSE;
 }
// Prior to re-enabling the interrupts, make sure the insert/remove interrupt is cleared.
 INPLACE_OR(HOST1_STAT_REG, A_CHG_IRQ_EN);
// Enable the insert/remove interrupts. */
 INPLACE_OR(DEV1_IRQ_EN_REG, A_CHG_IRQ_EN);
 }

void sie2_check_for_connected_devices(void) {
 } // Null since SIE2 is a device

uint16 se7driver_stop(USB_DEVICE *dev) {
 if (!DriverInUse) return ERROR;
 DriverInUse = FALSE;
// Release any system resources we have
 if (buttons_urb) {
 td_clear_URB(buttons_urb); // Remove from td processor
 release_URB(buttons_urb); // Deallocate the urb
 }
 if (lights_urb) {
 if (lightsUrbInUse) td_clear_URB(lights_urb);
 release_URB(lights_urb);
 }
 return SUCCESS;
 }

uint16 se7driver_ioctl(USB_DEVICE *dev, uint16 cmd, uint16 d1, uint16 d2) {
// Nothing to do since no IOCTLs defined
 if (DriverInUse) return SUCCESS;
 return ERROR;
 }

// Handle button presses from device
void buttons_report_received(URB *urb) {
 if (urb->status == SUCCESS) {
// Do I process the button locally or just pass it on?

 Chapter 5: Concurrent operation as a host and device

 67

 if (passthru_downstream_buttons) app_button_handler(host_buttons_report);
 else button_press(host_buttons_report);
 }
 else {
// There was an error on the urb, so Frameworks will stop scheduling it
// I should try and resubmit it to keep looking for INT-IN
 urb->transfer_buffer = &host_buttons_report;
 urb->buffer_length = sizeof(host_buttons_report);
 urb->callback = (PFNURBCALLBACK) buttons_report_received;
 if (td_submit_URB(urb) == ERROR) {
 release_URB(urb);
 show_error(0xC);
 }
 }
 }

// Device lights update report has been sent
void lights_report_sent (void) {
// Now OK to reuse lights urb
 lightsUrbInUse = FALSE;
 }

void button_press(BUTTON button) {
// Process the button press locally and update the display
 switch (button) {
 case BTN_UP: if (++DisplayValue > 9) DisplayValue = 0; break;
 case BTN_DOWN: if (--DisplayValue < 0) DisplayValue = 9; break;
 case BTN_LEFT: DisplayValue = 0; break;
 case BTN_RIGHT: DisplayValue = 9; break;
 default: break;
 }
 update_display(DisplayValue);
 }

void update_display(uint16 value) {
// Update the local display and relay the information downstream
 cpld_set_ssd(value);
 host_lights_report = value & 0x0F;
 if (!lightsUrbInUse) {
 lights_urb->transfer_buffer = &host_lights_report;
 lights_urb->buffer_length = sizeof(host_lights_report);
 lights_urb->callback = (PFNURBCALLBACK) lights_report_sent;
 if (td_submit_URB(lights_urb) == ERROR) {
 release_URB(lights_urb);
 show_error(0xD);
 }
 else lightsUrbInUse = TRUE;
 }
 }

// This function is called when device enumeration is complete or failed
void sie1_enumeration_notify(USB_DEVICE *dev) {
// This example host only supports the BAL device, check that this is it!
 if ((dev->enum_state == ES_COMPLETE) && (dev->dev_descr.idVendor == 0x4242) && (dev-
>dev_descr.idProduct == 0xc003)) {
 cpld_set_led(SESSION_ACTIVE_LED);
 if (dev->direct_connect) direct_connect_present[dev->port] = TRUE;
 }
 else {
 cpld_set_led(ERROR_LED);
 cpld_set_ssd(0xF);
 direct_connect_present[dev->port] = FALSE;
 tpl_unlink_all_port(dev->port);
 device_cleanup(dev->sie, dev->port);

USB Multi-Role Device Design By Example

68

 dealloc_device(dev);
 }
 }

// Now declare the device callbacks - this is se3 but using SIE2
void SetConfigurationRequest(void) {
 USB_DEVICE_REQUEST *req;
 req = (USB_DEVICE_REQUEST *) SIE2_DEV_REQ;
// Let BIOS handle this request first
 BIOSConfigurationChange();
// If I got configured then I can enable my data endpoints
 if ((req->wValue & 0xFF) ==
configuration_descriptor.config_header.bConfigurationValue) {
 Configured = TRUE;
 cpld_set_ssd(0);
 cpld_set_led(SLAVE_LED);
// Ask BIOS to inform me when a lights report is received
 setup_lights_report_callback();
 }
 else {
 Configured = FALSE;
 cpld_clear_ssd();
 cpld_clr_led(SLAVE_LED);
 }
 }

void InterceptStandardRequest(void) {
 USB_DEVICE_REQUEST *req;
 req = (USB_DEVICE_REQUEST *) SIE2_DEV_REQ;
// BIOS does not handle GetDescriptor(Interface) so check for that
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) && ((req->bmRequestType & 3) == 1)
&& (req->wValue == 0x2200)) {
 report_descriptor_info.buffer = &report_descriptor;
 report_descriptor_info.length = sizeof(report_descriptor);
 report_descriptor_info.done_func = 0; // Let BIOS handle completion
 susb_send(SIE2, 0, &report_descriptor_info);
 }
 else {
// Pass the request on to BIOS to handle
 BIOSStandardRequestHandler();
 }
 }

// The device owns the buttons
void app_button_handler(BUTTON button) {
// Report this change in button state to the host if we are configured
 if (Configured) {
 buttons_report_info.buffer = &device_buttons_report;
 buttons_report_info.length = sizeof(device_buttons_report);
 buttons_report_info.done_func = 0; // Let BIOS handle completion
 device_buttons_report = button;
 susb_send(SIE2, 1, &buttons_report_info);
 }
// If the device is sharing the buttons then initiate a host_lights_report
 if (share_local_buttons) button_press(button);
 }

// The device has just received a lights_report
void lights_report_received (void) {
 update_display(device_lights_report);
// Wait for the next update
 setup_lights_report_callback();
 }

 Chapter 5: Concurrent operation as a host and device

 69

void setup_lights_report_callback() {
 lights_report_info.buffer = &device_lights_report;
 lights_report_info.length = sizeof(device_lights_report);
 lights_report_info.done_func = (PFNINTHANDLER) &lights_report_received;
 susb_receive(SIE2, 2, &lights_report_info);
 }

Figure 5-3. Host+Device Application Program

Simple Example #8 – Using Scan Records 2
 The default operation of BIOS initializes both SIEs using default descriptors.
We do not want either of them initialized in this example so we must preload the short
program shown in Figure 5-4 into the I2C eeprom of the EZ-Host mezzanine board
while we are debugging the program with Insight/gdb.

.section .init
; First define the code that needs to be loaded
; It will be prefixed with a Scan Header
 .short ScanSignature
 .short Length+2
 .byte LoadCommand
 .short _start
.global _start
_start:
; Give control back to BIOS, this skips SIE1 and SIE2 initialization
mov r15, 0x400 ; Reset the stack
 sti ; First time interrupts are enabled
 int IDLER_INT ; This will not return
.equ Length, .-_start
; Now define a scan record that will transfer control to my program
 .short ScanSignature
 .short 2
 .byte JumpCommand
 .short _start

Figure 5-4. se8 used to modify BIOS operation

 Click bash_env in the se8 directory to create a bash window. Then enter
“make” to build se8.bin. Set dipswitches 6, 5, 4, and 3 on and enter “qtui2c
se8.bin f” to program the eeprom then enter “exit” to close the bash window. We
have now given up our USB debug port so we must connect a serial cable between
the EZ-Host mezzanine board and our development PC. We connect the USB cable
to our target PC and connect the EZ-OTG mezzanine board that has been
programmed to look like a buttons and lights device to SIE1. Your hardware should
now look like Figure 5-5.

USB Multi-Role Device Design By Example

70

CPU

CPU

Firmware Development PCTarget PC

Serial
Cable

EZ-Host

EZ-OTGCPUCPU

CPUCPU

Firmware Development PCTarget PC

Serial
Cable

EZ-Host

EZ-OTG

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INC

DEC

USB Design By Example: Buttons and Lights

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INC

DEC

Remote IO Device found

Remote IO Device found

ExitExit

INC

DEC

INCINC

DECDEC

Figure 5-5. Hardware staged for debug

 Click on bash_env in the se7 directory to create a bash window. Enter
“make” to build our host+device example se7. Click on bash_env again to create a
second bash window and enter “cy16-elf-libremote –s –P com1 –b 28800”
to create a serial connection to our target system. In the first bash window enter
“cy16-elf-gdb se7” to start the Insight debugger and click the RUN icon. Your
target settings for this example will be the same as the previous examples, even
though we are shifting to using the serial port. The program will be downloaded to
the EZ-Host mezzanine board via the serial cable and the program will break at
Main().

Clear all breakpoints and click on continue.

 On the target PC start the Buttons and Lights host program and verify that
clicking buttons on the PC host display or on the EZ-Host mezzanine board cause
the seven segment display to track. The device is working!

 On the EZ-OTG mezzanine board click buttons to ensure that the seven-
segment display advances. Click buttons on the EZ-Host mezzanine board to ensure

 Chapter 5: Concurrent operation as a host and device

 71

that both seven segment displays track. The displays may not start in sync but they
will track after the first button press. The host is working!

 Stop the debug session and exit Insight. You should also reset the libremote
window (i.e. Control+C, up-arrow, enter).

 The three seven segment displays did not remain in sync since the host
application program keeps button presses it receives from the EZ-OTG mezzanine
board as private. Some applications will work this way. We will make a small
modification to our host program to forward these button presses to the device
program that will, in turn, forward these to the PC host. The device program will also
forward seven-segment display changes down to the EZ-OTG mezzanine board.

 Open app.c in the se7 directory and search for share_local_buttons and
passthru_downstream_buttons. These two boolean variables are initially set to false.
You can change one or both of these variables to change how button press events
are routed around the system. Note that the same approach would be used for larger
reports or data movement. Try setting “passthru_downstream_buttons = TRUE;” and
save app.c. In the bash window enter “make,” then “cy16-elf-gdb se7” and in
the Insight window click on RUN. Clear all breakpoints and click “continue.”

 Check the operation of all the buttons and observe all of the seven-segment
displays now stay in sync.

 The host+device application is working!

Smart USB Devices
 I have redrawn our example in Figure 5-6 so that we can better appreciate
the capability we have created.

USB Multi-Role Device Design By Example

72

CPU RAM
8K x 16

BIOS
ROM
4K x 16

Serial IOParallel IO
USB
Host

EZ-Host/EZ-OTG

EZ-Host Only

16-bit Internal Buses

USB
Host

OTG

USB
Device

M
em

or
y

E
xp

an
si

on

CPU RAM
8K x 16

BIOS
ROM
4K x 16

Serial IOParallel IO
USB
Host

EZ-Host/EZ-OTG

EZ-Host Only

16-bit Internal Buses

USB
Host

OTG

USB
Device

M
em

or
y

E
xp

an
si

on

Figure 5-6. EZ-Host/EZ-OTG is a very smart USB device

 To the PC, the EZ-Host/EZ-OTG in this configuration looks just like a
standard USB device. It is fully programmable to enable it to look like any USB
device. It also has host capability – one host port on the EZ-OTG and two host ports
on the EZ-Host. This means that you can plug any standard USB device into this
subsystem.

 Have you designed a USB device and wished that you could attach a USB
keyboard or a USB mouse to it? Or needed mass storage, so longed for an A socket
to attach a mini Flash Drive? Well, with this EZ-Host/EZ-OTG sub system you can
now do that!

 Before we get too carried away with the solution possibilities that this opens
up I must remind you that the EZ-Host/EZ-OTG must contain a device driver for
whatever USB device that you want to attach to the host port(s). We wrote a device
driver in Chapter 4 and saw that it was not difficult. This subsystem will be used as
an embedded host and need only support a few specific USB devices – this is the
targeted peripherals list.

 I have two diverse examples to demonstrate the wide range of solutions that
this host+device subsystem can create. The first is a remote data acquisition and
control system and the second is a video “black-box.”

 Chapter 5: Concurrent operation as a host and device

 73

Data Acquisition Example
 USB has had limited adoption in remote data acquisition and control systems
due to the limits in cable length and device count. The USB specification limits the
maximum length of a cable to 5 meters, the maximum hub depth to 5 and the
maximum number of devices to 126. This means that all 126 devices must be within
a 30 meter radius of the PC host. Our EZ-Host/EZ-OTG subsystem is a device so it
must be within 30 meters of the PC host, but it is ALSO a host and, as such, can
support ANOTHER 126 devices at a radius of 30 meters. And we could do this
again. And again. We are, in effect, creating multiple USB “sub-nets” as shown in
Figure 5-7.

E
Z-H

ost
EZ-O

TG
USB Device

USB Host

PC

E
Z-H

ost
E

Z-O
TG

USB Device

USB Host

Hub

Hub D D D

D D D

One of 126 devices

One of 126 devices

Can support up to 126 devices

Can support up to 126 devices

E
Z-H

ost
EZ-O

TG
USB Device

USB Host

PC

E
Z-H

ost
E

Z-O
TG

USB Device

USB Host

Hub

Hub D D D

D D D

One of 126 devices

One of 126 devices

Can support up to 126 devices

Can support up to 126 devices

Figure 5-7. Example of a smart USB device: data acquisition and control

 In this DAQ example the EZ-Host/EZ-OTG is acting as a data concentrator
for inbound data and a distribution point for outbound control information. The data
collection/control elements can be simple USB devices supporting a standard
protocol such as HID. The EZ-Host/EZ-OTG concatenates the data from its slave
devices and forwards this upstream. Similarly it receives concentrated control

USB Multi-Role Device Design By Example

74

information from upstream and redistributes it to its slave control devices. The
constant polling of the devices would quickly identify any broken connections and the
plug-and-play nature of USB would enable the sub-net to be dynamically changed or
repaired.

 Simple Example 7 has most of the functionality that we need for this data
acquisition example. We will want, of course, to support multiple devices and will
therefore need a hub driver. The structure of this code will be just like se6_driver,
and a working example will be presented in Chapter 7.

 Additionally the se6_driver code must be extended to support multiple
running devices: the code can be extended using two alternate methods, both of
which separate the driver code from the driver data. We need to run multiple copies
of the driver code (ie multiple identical tasks) but each will operate on a different set
of data. We could declare the procedures as reentrant so that the working data was
stored on the stack, or we could extend the device object to include the variables that
the driver requires.

 I would recommend using the “Buttons and Lights” device as your first data-
acquisition and control device and then add features to it. Once your example code
is built you would use the hardware setup shown in Figure 5-8 to test it.

 Chapter 5: Concurrent operation as a host and device

 75

CPU

CPU

Target PC

EZ-Host

EZ-OTG

Standard USB Hub

CPUCPU

CPUCPU

Target PC

EZ-Host

EZ-OTG

Standard USB Hub

USB Design By Example: Buttons and Lights

Remote IO Device found
Exit

INC

DEC

USB Design By Example: Buttons and Lights

Remote IO Device found
Exit

INCINC

DECDEC

Figure 5-8. Data acquisition and control example

 One of my reviewers pointed out that the device side of the EZ-Host/EZ-OTG
host+device need not use USB. If the data rate were low then an RS232 connection
could be used – this is a little more work but it would mean that our data acquisition
system could be a long way from the PC!

 Another reviewer pointed out that the device connection need not be a
permanent one. The EZ-Host/EZ-OTG could gather data and store it. An operator
could visit the sub system and connect it to a laptop and upload the collected data
and download new control parameters.

 I’m sure that you too will think up many applications for this device+host
subsystem.

USB Multi-Role Device Design By Example

76

Video Black Box Example
 My second host+device example takes a standard USB device, in this case a
video camera, and adds features to it. Lets first consider the case where the PC is
attached as shown in Figure 5-9 – we will remove it later.

EZ-Host/EZ-OTG

USB
Device

USB
Host

EZ-Host/EZ-OTG

USB
Device

USB
Host

Figure 5-9. Smart USB device: video black box using standard USB camera

 At power-on the EZ-Host/EZ-OTG host-side enumerates the video camera
but does not enable it yet. It passes this descriptor information to the device-side.
The device-side then connects to the PC host and uses the enumeration information
gathered from the camera. The PC host, assuming that it is talking directly to the
camera, loads an appropriate device driver that will instruct the camera to start
sending video data. Our host+device forwards this command to the camera and then
forwards the video data from the camera to the PC host. Neither the PC host or USB
video camera is aware that we are intercepting and relaying information in both
directions – this means that no extra software needed to be written at either end.

 But we do more than just pass the video data through. Our application
program keeps a buffer of the last X second in its internal memory. Note that the
video data is not in a useful format such as frames. All video cameras that operate at
12 Mb/s use some kind of proprietary data compression on the video data and use
bulk transfers to transport the data to the PC. This encoded data is decompressed
by a camera device driver at the PC. So we cannot process the data but we can
store it.

 Chapter 5: Concurrent operation as a host and device

 77

 Should the video stop for some reason then the EZ-Host/EZ-OTG
host+device could be requested to play back the stored data. This may tell us why
the video stopped. Or the host+device could be instructed to save data at strategic
times for later playback. Once the system has been set up, the PC host could be
removed – it could be reconnected at a later time to view stored video.

 This video black box solution would be attractive in security and safety
applications.

What other USB device can you think of that would benefit from a smart “front-end?”

Chapter Summary
 It is straight forward to build a subsystem that supports a host connection
and a device connection concurrently. The host application program and the device
application program can cooperatively share and process data thus enabling you to
build a new range of smart devices. A simple example of a buttons and lights HID
device was worked in detail and two other examples, a remote data acquisition
system and video black box, were outlined.

 The simplicity with which the EZ-Host/EZ-OTG components enable you to
construct feature-rich smart devices will quickly extend the range of USB solutions.

 In the next chapter we shall look at a dual-role device that can operate as a
host or as a peripheral and dynamically switch between the two roles. This is the
world of OTG.

USB Multi-Role Device Design By Example

78

 Chapter 6: Designing a dual-role device

 79

Chapter 6: Designing a dual-role device

 We have seen, in the previous chapters, that the design of host capability
and the design of device capability with the EZ-Host/EZ-OTG is straightforward, and
we have several working examples. These designs used an A connector for a host
and a B connector for a device, and some of these examples used multiple
connectors. In this chapter we will design a dual-role device that is characterized by
its single Mini-AB connector – this device is sometimes a host (other devices plug
into it) and it is sometimes a device (it plugs into a host). The firmware is more
complex, especially since we have to support the swapping of roles, but we have
most of the building blocks that we need to complete the design, from previous
examples, so this project too will be straightforward.

 A dual-role device is typically battery powered. In fact, this was the model
that the OTG Supplement was written around. Figure 6-1 shows an overview of the
dual-role example that we will develop. We will re-use the host and device “buttons
and lights” examples code so that we can focus on the new elements required for the
dual-role functionality.

DEC

Host

Peripheral

Session

Host

Peripheral

Session

Indicator
LEDs Buttons

7 Segment
Display

Battery
Powered

Mini-AB
connector

USB Mini-A to
Mini-B cable

Identical Subsystem

INC

DEC

HNP SRP

INC

HNP SRP

Figure 6-1. Overview of dual-role example

 The mezzanine boards do not support battery-powered operation so we have
to trust that this operates correctly (it does, I prototyped a smaller, battery-powered
board to test the firmware).

USB Multi-Role Device Design By Example

80

New dual-role concepts
 The OTG Supplement that defines a dual-role device introduced several new
concepts that I will demonstrate in this chapter’s example. A USB cable has two
ends, an A-end and a B-end. This allows us to define two terms that describe the
two roles of a dual-role device. The cable defines the start-up configuration of each
dual-role device: at the A-end of the cable is the default A-device or start-up host and
at the B-end of the cable is the default B-device or start-up peripheral. Note that if a
cable is not inserted into a Mini-AB connector then both dual-role devices default to
be a peripheral since the ID pin is floating (refer back to Figure 1-9 if required).

 Battery-powered devices always manage themselves to minimum power
consumption, so an A-device will turn off Vbus when it has finished using the USB
cable. If the B-device later decides that it needs to initiate some USB transfers then it
will, if enabled, use Session Request Protocol (SRP) signaling to ask the host to re-
power the cable. It will use Host Negotiation Protocol (HNP) to swap roles so that it
can control the USB communications for a while. When completed it will close the
session and revert back to being a peripheral. From an application program
perspective these protocols are very easy as Frameworks handle them. The
Frameworks code is quite elaborate since it involves interacting hardware and
firmware on the two devices, and we will cover what is happening “behind-the-
scenes” later in this chapter. The application program must be extended to allow
SRP and HNP sequences to be generated, and we shall do this via button presses.

Simple Example #9 - Dual-role Buttons and Lights Device
 The structure of the dual-role firmware will be the familiar Init_Task,
Idle_Task and Callback routines as used in the other examples. I defined a global
variable, FWX_SYSTEM_MODE, which has values of STOP, HOST and SLAVE, so
the firmware knows which role it is currently implementing. I combined the “buttons
and lights” device application code (se3) and the “Buttons and Lights” host
application code (se6) to create the dual-role application code shown in Figure 6-2.

I added code to the device-role buttons callback routine to detect two
additional button presses, SRP and HNP. I also added an OTG descriptor to the
device configuration, and code to handle the SetFeature (HNP) command.

 On the host side, I added code to handle the additional features by defining
them in fwxcfg.h. This will result in the host giving the peripheral an opportunity to
implement an SRP and then an HNP. The host enables the device to swap roles via
a SetFeature (HNP) prior to suspending itself.

 The fwxcfg.h configuration file in the se9 directory enables the SRP and HNP
modules within Frameworks.

 Chapter 6: Designing a dual-role device

 81

/* File: app.c. Simple Example 9
 * BAL host+device, dual-role device on SIE1 (device on SIE2 for debugger)
 */

#include "app.h"
#include "sie1.h"

/* Application data. */
// Most of the OTG functionality is handled by Frameworks
// We control it's operation via the otg data structure (declared in otg.c)
// OTG support is only available on Host port 0
#define OTG_Port 0
// Port changes are detected in an ISR and serviced in the IdleTask
bool port_insert = FALSE;
bool port_remove = FALSE;
bool direct_connect_present = FALSE;

// Declare the Host specific data
// Provide lights report on button change and receives a buttons report
uint8 host_buttons_report ATTR_USB_XFER_BUF_SECTION;
uint8 host_lights_report ATTR_USB_XFER_BUF_SECTION;
int DisplayValue = 0;
uint16 previous_button_state = ~0;

// My Host driver needs two URBs - I allocate them in Start_Driver and re-use
URB *buttons_urb = 0, *lights_urb = 0;
bool lightsUrbInUse = FALSE;

// Describe my driver is a Frameworks compatible format. Only one may be active
bool DriverInUse = FALSE;
CLASS_DRIVER const se9_driver = {
 0, // class
 0, // subclass
 3, // if_class
 0, // if_subclass
 0, // protocol
 0x4242, // vendor_ID
 0xc003, // product_ID
 se9driver_start, // (*start)(USB_DEVICE *dev)
 se9driver_stop, // (*stop)(void)
 se9driver_run, // (*run)(void)
 se9driver_ioctl, // (*ioctl)(USB_DEVICE *, uint16, uint16, uint16)
 };

// Now declare the device data, see se3 for more details
extern uint8 strings_descriptor;
uint8 device_buttons_report ATTR_USB_XFER_BUF_SECTION = 0;
uint8 device_lights_report ATTR_USB_XFER_BUF_SECTION = 0;
USBTXRXINFO reply = {0}, buttons_report_info = {0}, lights_report_info = {0};
bool buttons_report_inuse = FALSE; // I recycle the same buffers

USB_DEVICE_DESCRIPTOR const device_descriptor ATTR_SIE1_DESCR_SECTION = {
 18, 1, 0x200, 0, 0, 0, 64, 0x4242, 0xc003, 0x100, 1, 2, 0, 1
 };

USB Multi-Role Device Design By Example

82

uint8 const report_descriptor[] ATTR_SIE1_DESCR_SECTION = {
 6, 0, 0xFF, // Usage_Page (Vendor Defined)
 9, 1, // Usage (IO Device)
 0xA1, 1, // Collection (Application)
 0x19, 1, // Usage_Minimum (1)
 0x29, 8, // Usage_Maximum (8)
 0x15, 0, // Logical_Minimum (0)
 0x25, 1, // Logical_Maximum (1)
 0x75, 1, // Report_Size (1)
 0x95, 8, // Report_Count (8)
 0x81, 2, // Input (Data,Var,Abs) = Buttons
 0x19, 1, // Usage_Minimum (1)
 0x29, 8, // Usage_Maximum (8)
 0x91, 2, // Output (Data,Var,Abs) = Lights
 0xC0 // End_Collection
 };

USB_ALL_DESCRIPTORS const configuration_descriptor ATTR_SIE1_DESCR_SECTION = {
 { /* config_descriptor header */
 9, 2, sizeof(USB_ALL_DESCRIPTORS), 1, 1, 0, 0xC0, 50 },
 { /* interface */
 9, 4, 0, 0, 2, 3, 0, 0, 3 },
 { /* class_descriptor */
 9, 0x21, 0x100, 0, 1, 0x22, sizeof(report_descriptor) },
 { /* EP1_In */
 7, 5, 0x81, 3, 8, 100 },
 { /* EP2_Out */
 7, 5, 2, 3, 8, 100 },
 { /* OTG */
 3, 9, USB_OTG_SRP_SUPPORT | USB_OTG_HNP_SUPPORT }
 };

// Declare my Init_Tasks - there are several in this example
// Frameworks expects to call these named routines
void sie1_init(void) {
 otg_init();
 }

void app_pre_init(void) {
 INPLACE_AND(IRQ_EN_REG, ~TMR0_IRQ_EN); // Disable timer0
 }

void sie1_init_slave(void) {
// I usually do this in App_Init, but Frameworks needs it done here
// Update the descriptor pointers that BIOS uses
 WRITE_REGISTER (SUSB1_DEV_DESC_VEC, &device_descriptor);
 WRITE_REGISTER (SUSB1_CONFIG_DESC_VEC, &configuration_descriptor);
 WRITE_REGISTER (SUSB1_STRING_DESC_VEC, &strings_descriptor);
// I #define susb1_standard_handler and susb1_delta_cfg_handler in fwxcfg.h
// Now initialize SIE1
// Results in enumerating with the Host side of this app on other board
 susb_init(SIE1, USB_FULL_SPEED);
 INPLACE_OR(HOST1_IRQ_EN_REG, VBUS_IRQ_EN);
 }

void sie1_init_host(void) {
// Initialise as a host
 WRITE_REGISTER(HUSB_pEOT_ADR, 1200);
 husb1_init();
 INPLACE_OR(HOST1_IRQ_EN_REG, (VBUS_IRQ_EN | A_CHG_IRQ_EN | B_CHG_IRQ_EN));
 otg.a_set_b_hnp_en = FALSE;
 port_insert = FALSE;
 port_remove = FALSE;
 }

 Chapter 6: Designing a dual-role device

 83

uint16 se9driver_start(USB_DEVICE *dev) {
// Frameworks will pass me a driver object for the BAL HID device
// Only allow one copy of the driver to run
 if (DriverInUse) return ERROR;
 DriverInUse = TRUE;
 cpld_set_led(HOST_LED);
// Get two URBs needed for the interrupt reports
 buttons_urb = alloc_URB(FALSE, 0);
 if (!buttons_urb) return FALSE;
 lights_urb = alloc_URB(FALSE, 0);
 if (!lights_urb) return FALSE;
// I have two URBs, initialize them
// NOTE: since I know the device then I know it's attributes
// In the general case I would parse the descriptors to discover this information
// Initialize those elements of the urb that are constant
 lights_urb->dev = dev;
 lights_urb->dir = TD_CTRL_DIR_OUT;
 lights_urb->usb_dev_addr = dev->address;
 lights_urb->endpoint = 2; // See NOTE
 lights_urb->transfer_buffer = &host_lights_report;
 lights_urb->buffer_length = sizeof(host_lights_report);
 lights_urb->speed = dev->speed;
 lights_urb->type = USB_INTERRUPT_TRANSFER_TYPE;
 lights_urb->interval = 100; // See NOTE
// Initialize those elements of the urb that are constant
 buttons_urb->dev = dev;
 buttons_urb->dir = TD_CTRL_DIR_IN;
 buttons_urb->usb_dev_addr = dev->address;
 buttons_urb->endpoint = 1; // See NOTE
 buttons_urb->speed = dev->speed;
 buttons_urb->type = USB_INTERRUPT_TRANSFER_TYPE;
 buttons_urb->interval = 100; // See NOTE
 buttons_urb->transfer_buffer = &host_buttons_report;
 buttons_urb->buffer_length = sizeof(host_buttons_report);
 buttons_urb->callback = (PFNURBCALLBACK) buttons_report_received;
// Post the buttons_urb to wait for an input report from the device
 if (td_submit_URB(buttons_urb) == ERROR) {
 release_URB(buttons_urb);
 return FALSE;
 }
 else return SUCCESS;
 }

/* Declare the Idle_Tasks */
// Operation depends upon whether I am a Host or a Device
void sie1_idle(void) {
 FWX_SYSTEM_MODE mode;
 mode = fwx_get_system_mode(SIE1);
 switch(mode) {
 case SYSTEM_MODE_HOST:
// During Idle a host must look for device connect/disconnects
 if ((port_insert || port_remove) && otg_is_host()) {
 enumerate_device(SIE1, OTG_Port, &direct_connect_present,
 sie1_enumeration_notify);
 port_insert = FALSE;
 port_remove = FALSE;
 }
 break;
 case SYSTEM_MODE_HOST_INACTIVE:
 case SYSTEM_MODE_SLAVE_INACTIVE:
 port_insert = FALSE;
 port_remove = FALSE;
 break;

USB Multi-Role Device Design By Example

84

 case SYSTEM_MODE_SLAVE:
 default: break;
 }
 }

void se9driver_run(USB_DEVICE *dev) {
 }

void app_task(FWX_SYSTEM_MODE mode[2]) {
// Handle button presses in my Idle_Task as a Device
 uint16 button_state;
 button_state = CPLD_READ_BUTTONS();
 CPLD_CLEAR_BUTTON(button_state);
 if (button_state != previous_button_state) {
 previous_button_state = button_state;
 if (button_state) app_button_handler(button_state);
 }
 }

/* Declare Callback routines */
uint16 se9driver_stop(USB_DEVICE *dev) {
 DriverInUse = FALSE;
// Release any system resources we have
 if (buttons_urb) {
 td_clear_URB(buttons_urb); // Remove from td processor
 release_URB(buttons_urb); // Deallocate the urb
 buttons_urb = 0;
 }
 if (lights_urb) {
 td_clear_URB(lights_urb);
 release_URB(lights_urb);
 lights_urb = 0;
 }
 lightsUrbInUse = FALSE;
 return SUCCESS;
 }

uint16 se9driver_ioctl(USB_DEVICE *dev, uint16 cmd, uint16 d1, uint16 d2) {
// Nothing to do since no IOCTLs defined
 if (DriverInUse) return SUCCESS;
 return ERROR;
 }

// Handle button presses from device
void buttons_report_received(URB *urb) {
 if (urb->status == SUCCESS) {
// The device sent me a button press (so I must be a host at the moment!)
// Treat this as a local button press
 app_button_handler(host_buttons_report);
 }
 else {
// There was an error on the urb, so Frameworks will stop scheduling it
// I should try and resubmit it to keep looking for input reports
 urb->transfer_buffer = &host_buttons_report;
 urb->buffer_length = sizeof(host_buttons_report);
 urb->callback = (PFNURBCALLBACK) buttons_report_received;
 if (td_submit_URB(urb) == ERROR) {
 release_URB(urb);
 }
 }
 }

 Chapter 6: Designing a dual-role device

 85

// Device lights update report has been sent
void lights_report_sent (void) {
// Now OK to reuse lights urb
 lightsUrbInUse = FALSE;
 }

void update_display(uint16 value) {
// Update the local display
 cpld_set_ssd(value);
 if (otg_is_host()) {
// Relay the information downstream if I am a host
 host_lights_report = value & 0x0F;
 if (lights_urb != 0 && !lightsUrbInUse) {
 lights_urb->callback = (PFNURBCALLBACK) lights_report_sent;
 if (td_submit_URB(lights_urb) == ERROR) {
 release_URB(lights_urb);
 }
 else lightsUrbInUse = TRUE;
 }
 }
 }

// This function is called when device enumeration is complete or failed
void sie1_enumeration_notify(USB_DEVICE *dev) {
// This example host only supports the BAL device, check that this is it!
 if ((dev->enum_state == ES_COMPLETE) && (dev->dev_descr.idVendor == 0x4242)
 && (dev->dev_descr.idProduct == 0xc003)) {
 if (dev->direct_connect) {
 direct_connect_present = TRUE;
 if (otg.id == A_DEV) otg.b_conn = TRUE; else otg.a_conn = TRUE;
 }
 }
 else {
 direct_connect_present = FALSE;
 tpl_unlink_all_port(dev->port);
 dealloc_device(dev);
 }
 }

// Now declare the device callbacks
void susb1_delta_cfg_handler(void) {
 USB_DEVICE_REQUEST *req;
 req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ;
// BIOS signals me on ALL "set" commands, look for "Set Configuration"
 if ((req->bmRequestType == 0) && (req->bRequest == USB_SET_CONFIGURATION)) {
// If I got configured then I can enable my data endpoints
 if ((req->wValue & 0xFF) ==
 configuration_descriptor.config_header.bConfigurationValue) {
// Ask BIOS to inform me when a lights report is received
 setup_lights_report_callback();
 }
 }
 }

bool susb1_standard_handler(USB_DEVICE_REQUEST *req) {
// BIOS does not handle GetDescriptor(Interface) so check for that
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) &&
 ((req->bmRequestType & 3) == 1) && (req->wValue == 0x2200)) {
 reply.buffer = &report_descriptor;
 reply.length = sizeof(report_descriptor);

USB Multi-Role Device Design By Example

86

 reply.done_func = 0; // Let BIOS handle completion
 susb_send(SIE1, 0, &reply);
 }
 else {
// BIOS does not handle OTG requests, so check for these too
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) &&
 ((req->bmRequestType & 3) == 0) && (req->wValue == 0x0900)) {
 reply.buffer = (void *) &configuration_descriptor.otg_descriptor;
 reply.length = sizeof(USB_OTG_DESCRIPTOR);
 reply.done_func = 0; // Let BIOS handle completion
 susb_send(SIE1, 0, &reply);
 }
 else {
 if ((req->bRequest == USB_SET_FEATURE_REQUEST) &&
 (req->wValue == B_HNP_ENABLE)) {
 otg.b_hnp_en = TRUE;
 susb1_finish();
 }
 else if ((req->bRequest == USB_SET_FEATURE_REQUEST)
 && (req->wValue == A_HNP_SUPPORT || req->wValue == A_ALT_HNP_SUPPORT)) {
 susb1_finish();
 }
 else {
// Pass the request on to BIOS to handle
 return FALSE;
 }
 }
 }
 return TRUE;
 }

void app_button_handler(BUTTONbutton) {
// Operation of the buttons depends upon what mode I am in
 FWX_SYSTEM_MODE mode;
 mode = fwx_get_system_mode(SIE1);
 switch (mode) {
 case SYSTEM_MODE_SLAVE_INACTIVE:
// The Left and Right buttons are used to initiate some action
 switch(button) {
 case BTN_LEFT:
// This is interpreted as a "Request HNP"
 switch(otg.state) {
 case a_peripheral: otg.a_bus_req = TRUE; break;
 case b_peripheral: otg.b_bus_req = TRUE; break;
 default: otg.b_bus_req = FALSE;
 }
 break;
 case BTN_RIGHT:
// This is interpreted as a "Request SRP"
 if (otg.state == b_idle) otg.b_bus_req = TRUE;
 break;
 default: break; // Other buttons are ignorred
 }
 break;
 case SYSTEM_MODE_SLAVE:
// React to the INC and DEC buttons
 switch(button) {
 case BTN_UP:
 case BTN_DOWN:
// Forward these buttons to the host
 if ((otg.state == a_peripheral) ||
 (otg.state == b_peripheral)) {
 buttons_report_info.buffer = &device_buttons_report;

 Chapter 6: Designing a dual-role device

 87

 buttons_report_info.length =
 sizeof(device_buttons_report);
 buttons_report_info.done_func = 0;
 device_buttons_report = button;
 susb_send(SIE1, 1, &buttons_report_info);
 }
 break;
 default: break; // Other buttons are ignorred
 }
 break;
 case SYSTEM_MODE_HOST_INACTIVE:
 case SYSTEM_MODE_HOST:
 switch(button) {
 case BTN_UP:
 if (++DisplayValue > 9) DisplayValue = 0;
 update_display(DisplayValue);
 break;
 case BTN_DOWN:
 if (--DisplayValue < 0) DisplayValue = 9;
 update_display(DisplayValue);
 break;
 case BTN_LEFT:
// This is interpreted as a "Request HNP"
// Ask Frameworks to initiate a swap roles and call me back with the result
 handle_hnp(app_hnp_notify);
 break;
 case BTN_RIGHT:
// This is interpreted as a "End SRP Session"
 if (otg_is_host()) {
 otg.a_bus_drop = TRUE;
 otg.a_bus_req = FALSE;
 }
 else if (otg.state == a_idle) otg.a_bus_req = TRUE;
 break;
 default: break;
 }
 break;
 default:
 break;
 }
 }

// Was the HNP request successful?
void app_hnp_notify(uint16 status) {
 if (status != SUCCESS) otg.a_bus_req = TRUE;
 }

// The device has just received a lights_report
void lights_report_received (void) {
 update_display(device_lights_report);
// Wait for the next update
 setup_lights_report_callback();
 }

void setup_lights_report_callback() {
 lights_report_info.buffer = &device_lights_report;
 lights_report_info.length = sizeof(device_lights_report);
 lights_report_info.done_func = lights_report_received;
 susb_receive(SIE1, 2, &lights_report_info);
 }

USB Multi-Role Device Design By Example

88

// File sie1.c
// Some "housekeeping" routines from app,c since this was getting a little long

// Setup OTG to switch roles
void app_switching_otg_roles(uint16 new_device_role) {
 switch(new_device_role) {
 case A_DEV: otg.a_bus_req = TRUE; break;
 case B_DEV: otg.a_bus_req = FALSE; break;
 }
 }

void sie1_host_cleanup(void) {
 direct_connect_present = FALSE;
 }

void set_port_change(uint16 port) {
 port_insert = TRUE;
 }

void sie1_slave_reset_isr(void) {
 otg_slave_reset_isr(); // Pass on this reset
 }

void sie1_host_ins_rem_isr(uint16 status_register) {
// Handle plug/unplug events when operating as a Host
uint16 high_count, loop_count, reg;
#define min_high_count 250
#define max_loop_count 8000
 switch (otg.id) {
 case A_DEV:
 if (status_register & A_CHG_IRQ_FLG) {
 if (status_register & A_SE0_STAT) {
 otg.b_conn = FALSE; // Disconnected
 port_remove = TRUE;
 }
 else {
 otg.b_conn = TRUE;
 port_insert = TRUE;
 if (otg.state == a_idle) {
 high_count = 0;
 loop_count = 0;
 while ((high_count < min_high_count) &&
 (loop_count < max_loop_count)) {
 reg = READ_REGISTER(HOST1_STAT_REG) & A_SE0_STAT;
 if (reg) high_count = 0; else ++high_count;
 ++loop_count;
 }
 if (high_count >= min_high_count) {
 otg.a_srp_det = TRUE; // SRP detected
 otg.a_bus_req = TRUE;
 }
 else otg.b_conn = FALSE;
 }
 }
 }
 break;
 case B_DEV:
 if (status_register & A_CHG_IRQ_FLG) {
 if (status_register & A_SE0_STAT) {
 otg.a_conn = FALSE; // Disconnected
 port_remove = TRUE;
 }
 else {
 otg.a_conn = TRUE;

 Chapter 6: Designing a dual-role device

 89

 port_insert = TRUE;
 }
 }
 break;
 }
 if (port_insert) otg_insert_remove_isr(TRUE); // Tell Frameworks about event
 }

Figure 6-2. Dual-role “buttons and lights” example.

 Figure 6-2 contains a combined listing of app.c and sie1.c from the se9
directory edited to better fit the size of these book pages. The source file was getting
a little large so I partitioned it into two elements. The Design Examples on the
Cypress release CDROM take this one additional step by breaking out the host code
into deXdrvr.c.

 As usual, click “bash_env” in the se9 directory to create a bash window, and
enter “make” to build the example. Review se9.lst and notice that the se9 object file
is about 28KB – this is too big to fit into the EZ-OTG internal memory. I used a few
simple steps to reduce the size of the memory image of se9 to about 15KB so that
we can debug this example using our two mezzanine boards.

I created this compressed variant in the se10 directory so that you can follow
the steps I took.

Simple Example #10 – Standalone Dual-role Buttons and Lights Device
 Compressing se9 involved a few simple steps: by removing DEBUG from
the compilations and using code optimization I saved 12KB! This approach has the
disadvantage that I cannot use the GDB debugger on se10 but, since the application
code is the same as se9 that will run on the EZ-Host mezzanine card, then I believe
that we are adequately covered. With another 5KB of reduction required I focused
on the Frameworks code. Cypress provides the source code of all of the
Frameworks elements in the /Common directory and this code is feature-rich
supporting ALL aspects of a host/device/dual-role/multi-role design. I removed some
features that were not required for this simple dual-role HID example and easily got
below 15KB. The edited versions of these Frameworks files are also in the se10
directory. I did have to make a few minor edits to app.c to match the edits I made in
the Frameworks files and this too is in the se10 directory – I made no functional
changes. Build se10 by clicking on “bash_env” in the se10 directory and then
entering “make” in the bash window. The search paths defined in the makefile cause
the edited Frameworks files in the project directory to be used in preference to the
standard Frameworks files in the /Common directory.

USB Multi-Role Device Design By Example

90

 Once se10.bin is built we must copy it into the EEPROM of the EZ-OTG
mezzanine board. Create an EEPROM image using:

scanwrap se10.bin scanse10.bin 0x4a4

Finally, with DIP switches 6, 5, 4, and 3 ON enter:

qtui2c scanse10.bin f

This will copy the scan record file into the EEPROM. Now, when the EZ-

OTG mezzanine board is reset, it will be a standalone, dual-role, Buttons and Lights
device. We are now ready to test the dual-role example. The EZ-OTG mezzanine
board will be operating independently and we will control the EZ-Host mezzanine
board using the debugger. Set up the hardware as shown in Figure 6-3 and note that
the only cable connection initially made is the debugger connection of SIE2 on the
EZ-Host board to the development system.

CPU

CPU

EZ-Host with se9

EZ-OTG
with se10

Firmware Development PC

Mini-AB Cable
Initially disconnected

Mini-AB
Receptacle

Mini-AB
Receptacle

CPUCPU

CPUCPU

EZ-Host with se9

EZ-OTG
with se10

Firmware Development PC

Mini-AB Cable
Initially disconnected

Mini-AB
Receptacle

Mini-AB
Receptacle

Figure 6-3. Hardware used to debug the dual-role example.

This example uses both SIEs of the EZ-Host mezzanine board: SIE1 as a

dual-role connection and SIE2 for the debugger. We will need the BIOS startup

 Chapter 6: Designing a dual-role device

 91

modification code we developed in Chapter 3 loaded into the EZ-Host mezzanine
board EEPROM before continuing. So, open a bash window using bash_env from
the se2 directory and enter “qtui2c eeprom.bin f” to program the EEPROM.
Close this bash window.

 Open two bash windows on the development PC. In one window start the
remote debug driver using “cy16-elf-libremote -u” and in the other window
start the debugger using “cy16-elf-gdb se9.” Click the RUN icon of Insight to get
the program loaded, clear all breakpoints and click continue.

 Initially, with no interconnecting cable, both boards will initialize as a
peripheral – this is shown by the mezzanine board’s PERIPHERAL LED. Now insert
the A-end of the mini-AB cable into one of the boards, notice how it transforms itself
into a host. Removing the cable forces the board to revert to being a peripheral
device.

 The host-side of the example powers Vbus in anticipation of starting a
session – note that the SESSION LED comes on at the same time as the HOST LED
comes on. Now, with the A-end of the mini-AB cable attached to one board plug the
B-end of the cable into the other board – it’s SESSION LED will come on alongside
it’s PERIPHERAL LED. Pressing the INC and DEC buttons will cause both displays
to change.

 The host will terminate the session if you press the SRP/SESSION END
button. It will also start a new session if you press it again.

 The host can change its local display even when a session is not active and
this will cause the displays to become out of sync. Once a session is started then the
displays will resynchronize.

 The device can also start a session if you press its SRP/SESSION END
button but the host must terminate the session.

 While a session is active, press the HNP button on the default host (i.e. the
one with the A-plug inserted). I implemented this as an “Offer HNP” and this gives
the default peripheral an opportunity to swap roles and become a temporary host.
This swapping of roles is indicated on the HOST and PERIPHERAL LEDs.

 You can modify the operation of this dual-role device by changing the logic of
the app_button_handler procedure. Have fun!

 This simple example showed that adding dual-role capability, via SRP and
HNP, to an application program is straightforward since the complexity is handled
within Frameworks. The next section goes “behind-the-scenes” to explain what

USB Multi-Role Device Design By Example

92

Frameworks is doing. There is no need for you to modify this code – in fact; I would
recommend that you do not. It has passed the USB-IF OTG protocol test suite and
therefore is known to match the OTG Supplement Specification.

OTG behind-the-scenes
 The OTG Supplement describes the two OTG protocols using a combination
of state machines and text. This definition is very complete and covers all situations
including error conditions. But this completeness does make it more difficult to
explain, so I must thank my colleague Lane Hauck for producing a simplified version
by removing exceptional conditions. I combined Lane’s simplified A-device and
simplified B-device state diagrams to produce the simplified dual-role device state
diagram shown in Figure 6-4. I also redrew the diagram to better show the similarity
of operation of both devices. Note that Frameworks implements the full protocol as
required by the OTG Supplement Specification, and I am only using this simplified
diagram for explanation purposes.

reset

a_idlea_wait_vrise b_srp_initb_idle

a_wait_vfalla_wait_bcon b_wait_acon

a_peripheral b_peripheral

a_suspenda_host b_host

3

2

5

10

11

2

4

#2

#3

7

9

#3

10

6

12
8

#22

#1 1

#1

1

reset

a_idlea_wait_vrise b_srp_initb_idle

a_wait_vfalla_wait_bcon b_wait_acon

a_peripheral b_peripheral

a_suspenda_host b_host

3

2

5

10

11

2

4

#2

#3

7

9

#3

10

6

12
8

#22

#1 1

#1

1

Key: 1 = OTGID, defined by plug 2 = Vbus Valid
 3 = A or B want to use the bus 4 = B wants to start a session
 5 = B signals a connect 6 = A signals a connect
 7 = B signals a resume 8 = B signals a resume
 9 = A finished, offer HNP 10 = B finished, suspend bus
 11 = HNP success, swap role 12 = B accepts HNP

used to signify NOT
Figure 6-4. Simplified dual-role device OTG state machine

 Chapter 6: Designing a dual-role device

 93

 Figure 6-4 is in two halves – the left-hand side describes the operation of the
A-device, or default host, and the right-hand side describes the B-device, or default
peripheral. The only time a device would traverse from one side to the other is
following a major event such as plugging or unplugging the A-end of a USB cable. In
all other cases the A-device stays on the left and the B-device stays on the right.
Note that each side has stable states for host and peripheral operation.

 The diagram shows states, whose names are called out in the OTG
Supplement, in rounded rectangles and shows state transitions as numbered arrows.
A simplified description of the transition is shown in the key. States that have “wait”
in their name have an associated timer, and these timers may cause states
transitions also.

 Both OTG protocols, SRP and HNP, use voltage levels on the USB wires to
signal progress through the state machine. The default connection of two dual-role
devices, shown in Figure 1-9 and repeated in Figure 6-5 for convenience, will also be
used in this discussion.

USB Cable

Mini A
Plug

Mini B
Plug

Vbus
D +
D –
ID

Gnd

Dual-Role
Controller

1K5
15K

15K

15K

Vbus
D +
D –
ID

Gnd

Dual-Role
Controller

1K5
15K

15K

15K

Dual-role device with mini AB connector Dual-role device with mini AB connector

Note connection

USB Cable

Mini A
Plug

Mini B
Plug

Vbus
D +
D –
ID

Gnd

Dual-Role
Controller

1K5
15K
1K5
15K

15K

15K

Vbus
D +
D –
ID

Gnd

Dual-Role
Controller

1K5
15K
1K5
15K

15K

15K

Dual-role device with mini AB connector Dual-role device with mini AB connector

Note connection

Figure 6-5. Default dual-role device connection

 The cable in Figure 6-5 is shown adjacent to the connectors for clarity. This
discussion assumes that the USB cable is connected at both ends. The A-end of the
cable defines the default A-device and the B-end of the cable defines the default B-
device. Note that no data line biasing resistors are connected at initial system power-
on. The A-device will be in the a_idle state and the B-device will be in the b_idle
state. In the idle state both devices will turn on their pulldown resistors so the bus will
be in a SE0 state. This is point 1 in Figure 6-6, which shows time advancing down
the page and signals increasing positively to the right.

 Since this is the first time the A-device has been powered up it will start an
OTG session to discover if anything is connected to its root hub. It turns on Vbus and

USB Multi-Role Device Design By Example

94

moves to a_wait_vrise waiting for Vbus to be valid. Once Vbus is valid the A-device
will transition to a_wait_bcon. The B-device meanwhile will also detect Vbus as
valid and will transition to b_peripheral, where it removes its pulldown resistors and
attaches a pullup resistor to D+. This is point 2 in Figure 6-6. The A-device sees this
connection as a rise in D+ voltage and transitions to a_host. The A-device will
enumerate the B-device and will issue standard USB requests, which, in our
example, will be the interchange of HID reports created by the pressing of the INC
and DEC buttons. This is the standard operating mode of USB, and this too is shown
in Figure 6-6.

USB wires B-deviceA-device
D+ D+ D+Vbus

reset
b_idle

b_peripheral

b_idle

reset
a_idle

a_wait_vrise

a_wait_bcon

a_host

a_suspend
a_wait_vfall

a_idle

Standard Operation

1

2

3
4

5

USB wires B-deviceA-device
D+ D+ D+Vbus

reset
b_idle

b_peripheral

b_idle

reset
a_idle

a_wait_vrise

a_wait_bcon

a_host

a_suspend
a_wait_vfall

a_idle

Standard Operation

1

2

3
4

5

Figure 6-6. State transitions from power-on

 In our example, we defined responses to button presses to mean that the
host has completed its task and can remove Vbus. It first issues a SetFeature(HNP)
command to the device, which will allow it to take control of the bus if it desires. The
A-device will then transition to a-suspend. This is point 3 in Figure 6-6.

 On arrival at a_suspend the A-device will start a timer, a_aidl_bdis_tmr. If
the B-device wishes to take control of the bus, then it must indicate its intent by

 Chapter 6: Designing a dual-role device

 95

disconnecting its D+ pullup resistor before this timer expires. In our example the B-
device does not need the bus yet so it does not disconnect. This causes the A-
device to transition to a_wait_vfall where it turns off Vbus to end the session. This is
point 4 in Figure 6-6. Once Vbus has fallen below the valid session voltage the A-
device will transition to a_idle. The removal of Vbus will cause the B-device to
transition to b_idle. We are back where we started at power on! This is point 5 in
Figure 6-6.

 We can start a new session by pressing the SRP button on either board. If
we press the A-device button the sequence will run exactly as it did for the power-on
case. Note that a real-life A-device does not need to initiate SRP since it is the host
and therefore may start a session whenever it desires – the button-press is for
demonstration purposes in this example. In real-life it will be the B-device that
initiates a session using SRP; this example uses a button-press as the starting
action. The B-device, realizing that Vbus is absent, must initiate a Session Request
Protocol. It will transition to b-srp-init.

Session Request Protocol
 A B-device must employ two methods to signal an SRP to an A-device – the
first is “data-line pulsing” and the second is “Vbus pulsing.” The A-device is required
to respond to at least one of these methods. The B-device must wait until Vbus is
lower than (VA_SESSION_VLD min) and the data lines have been in a SE0 state for
at least 2 msec before it is allowed to start signaling.

 Data-line pulsing is the simpler method since the B-device need only attach
its D+ pullup for a period of 5 to 10 msec. Unfortunately, some non-compliant
devices can cause this method to fail. This is shown as point 1 in Figure 6-7.

 Vbus pulsing relies on time constants to charge and discharge a known
capacitance at the A-device. A dual-role device will have a maximum capacitance of
6.5uF while a standard host will have a minimum capacitance of 97uF. By driving the
Vbus line with a constant current of 8mA the B-device can successfully generate a
signal pulse that meets the OTG Supplement Specification. The EZ-Host/EZ-OTG
components integrate a Vbus source, and Frameworks uses an internal timer to
generate a pulse of the correct width. This is point 2 in Figure 6-7.

 After generating the SRP signal, the B-device returns to b_idle and waits for
Vbus to turn on. This is point 3 in Figure 6-7.

 In response to the SRP signaling the A-device will turn on Vbus and will
transition to a_wait_vrise. Once the session voltage is valid, the A-device will
transition to a_wait_bcon and the B-device will transition to b_peripheral. The A-
device will detect the B-device and will transition to a_host. Following enumeration,

USB Multi-Role Device Design By Example

96

since the A-device has no pending USB transfers to implement, it will transition to
a_suspend. This is the same sequence as the power-on case described in Figure 6-
6. This is point 3 in Figure 6-6 and point 4 in Figure 6-7.

 The B-device will detect this suspend but this time, since it has some USB
transfers it needs to implement, and it has received a SetFreature(HNP) from the A-
device, it transitions to b_wait_acon. In this state the B-device detaches its pullup
resistor causing the bus to fall to an SE0 state. This is point 5 in Figure 6-7.

 The host detects this SE0 state on the bus and treats it as positive
acknowledgement that the peripheral wants to switch to a host role. The host
therefore transitions to a_peripheral where it attaches a pullup to its D+ line. This is
point 6 in Figure 6-7.

 The B-device detects the attachment of the pullup resistor and transitions to
b_host where it operates as a standard USB host in control of all USB transfers.
This is point 7 in Figure 6-7.

 We have swapped roles!

 When the B-device has completed its data transfers it will suspend the bus
and transition into b_peripheral. The A-device will detect the suspended bus and
will transition to a_wait_bcon. Since the A-device doesn’t need the bus either, it
then transitions to a_wait_vfall where it turns off Vbus. When Vbus drops below the
valid session voltage both devices will return to their idle states, a_idle and b_idle.

 We are back at the power-on state. This is point 8 in Figure 6-7.

 Chapter 6: Designing a dual-role device

 97

USB wires B-deviceA-device

D+ D+ D+Vbus

b_idle
b_srp_init

b_idle

b_peripheral

b_wait_acon
b_host

b_peripheral

b_idle

a_idle

a_wait_vrise

a_wait_bcon

a_host
a_suspend

a_peripheral

a_wait_bcon
a_wait_vfall

a_idle

1

4
5
6

7

8

Standard Operation

2

3

USB wires B-deviceA-device

D+ D+ D+Vbus

b_idle
b_srp_init

b_idle

b_peripheral

b_wait_acon
b_host

b_peripheral

b_idle

a_idle

a_wait_vrise

a_wait_bcon

a_host
a_suspend

a_peripheral

a_wait_bcon
a_wait_vfall

a_idle

1

4
5
6

7

8

Standard Operation

2

3

Figure 6-7. State transitions with B-device initiating SRP signaling

Chapter Summary
 Designing a dual-role device with the EZ-Host/EZ-OTG is straightforward
since the complexity is handled by integrated hardware and the Frameworks
reference code. We worked through a simple example that used a “buttons and
lights” host application program and a “buttons and lights” peripheral application
program. The simple nature of the example allowed us to focus on the method, the
process and the new elements of SRP and HNP. A more complex dual-role device,
such as a digital still camera, would follow the same method – the host application

USB Multi-Role Device Design By Example

98

program would resemble a printer class driver and the peripheral application program
would resemble a mass storage class driver.

 In the next chapter we will explore the Host Port Interface (HPI) that both the
EZ-Host and the EZ-OTG components support. A “main” processor will use the EZ-
Host/EZ-OTG as a co-processor. The HPI interface is an orthogonal choice with
respect to the USB interfaces; therefore the examples that we have implemented so
far would all operate. We will be able to, of course, do many more examples using
this co-processor mode.

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 99

Chapter 7: Using EZ-Host/EZ-OTG in co-processor
mode as a USB host controller

 The previous chapters have described applications where the EZ-Host/EZ-
OTG component has been used in standalone mode. In standalone mode the EZ-
Host/EZ-OTG is the only processor in the system and it is responsible for running the
application program and for managing the USB connections. These USB
connections have been host, device or a combination of the two roles. The EZ-
Host/EZ-OTG also support a co-processor mode, and this is an orthogonal choice
with respect to the USB modes: this means that ALL of the examples that we have
worked in this book so far could be re-partitioned into a “main-CPU” section that
handled the application program and a “co-processor” section that handled the
details of the USB connections.

We have seen that the EZ-Host/EZ-OTG are very capable sub-systems so
they could handle ALL of the USB awareness of a project.

 In co-processor mode the EZ-Host/EZ-OTG is a slave device to a main
processor. The main processor is running the application program and, most likely,
an operating system, and this processor is using the EZ-Host/EZ-OTG to manage a
USB subsystem on its behalf. The communications channel between the main
processor and the EZ-Host/EZ-OTG component can be implemented as a parallel
interface using HPI or as a serial interface using HSS or SPI. My example will use
HPI, but the software has been written such that a swap to HSS or SPI only affects a
single module.

 Embedded Linux was chosen as target for this example since this is popular
in the intended application range of the EZ-Host/EZ-OTG components and the
development environment is readily available. The examples use Linux release
2.4.18, and an overview of the layered structure of this Linux release is shown in
Figure 7-1.

USB Multi-Role Device Design By Example

100

Linux Operating System

Shell

Class/Function Drivers

Device Drivers

Hardware

User
Kernel

Applications Programs

Kernel
Hardware

Linux Operating System

Shell

Class/Function Drivers

Device Drivers

Hardware

User
Kernel

Applications Programs

Kernel
Hardware

Figure 7-1. Linux is implemented in layers

 Linux 2.4.18 is a USB-aware release: device drivers are included for a UHCI
host controller and for an OHCI host controller. There is also an EHCI host controller
in experimental release 2.5.x, and the source code for this is downloadable for review
if required. The 2.4.18 release also contains several USB class drivers such as HID,
audio, hub and mass-storage, and we shall utilize this capability later in this chapter.

 Our project for this chapter, then, is to write a host controller driver for the
EZ-Host/EZ-OTG component that will replace the UHCI/OHCI driver in the standard
release. This is a well-defined problem since all of the software interfaces to Linux
are already defined – we will be writing a standard Linux device driver, and many
examples, books and tools are available to help us.

 A USB host controller always has a root hub – this is part of the USB
specification. In our case, the EZ-Host can have up to four root hubs, so our host
controller driver will have to manage these. Four root hubs means that the EZ-Host
can support four separate USB segments with up to 126 devices on each for a total
of 504 devices. The EZ-OTG has two root hubs so it can support 252 USB devices.

 We chose a StrongArm platform for the target system and the CY3663 co-
processor development board is shown in Figure 7-2. StrongARM is well supported
by Linux, and there are many device drivers and examples available. Many PDAs
use StrongARM + Linux to deliver a capable hand held device.

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 101

Figure 7-2. StrongARM co-processor development board.

 A block diagram of the CY3663 development board is shown in Figure 7-3.
The 133MHz StrongArm processor is supported with 16MB of Flash Memory, 512KB
of SRAM, 32MB of DRAM, local IO including buttons, LEDs, seven segment display
and a 2 line LCD display, an Ethernet connection and, most importantly for us, an
expansion connector where the EZ-Host or EZ-OTG mezzanine boards can be
attached.

USB Multi-Role Device Design By Example

102

SA1110
CPU

16MB
Flash

Memory

512KB SRAM

32MB
DRAM

Serial 1

Serial 2

USB device
(not used)

Local IO

Ethernet

Connector

READY CPU

General
Purpose
IO lines

32-bit Address/32-bit Data Bus

SA1110
CPU

16MB
Flash

Memory

512KB SRAM

32MB
DRAM

Serial 1

Serial 2

USB device
(not used)

Local IO

Ethernet

Connector

READYREADYREADY CPUCPU

General
Purpose
IO lines

32-bit Address/32-bit Data Bus

Figure 7-3. Block diagram of StrongArm coprocessor platform

 The StrongArm processor is a 32-bit RISC CPU with a 32-bit address bus.
The development platform sparsely populates this memory map. The flash memory
is at 0 and is organized as shown in Figure 7-4. A Linux system requires a file
system, and this example uses a Flash File System driver – the bootloader is in the
first 128KB Flash block (with some configuration parameters in the next two blocks),
and this loads a Linux image from Flash blocks 4 through 31. Flash blocks 32
through 127 are used as a 12MB disk drive. All of the Linux sources and build scripts
are provided on the Cypress release CD, so we can rebuild the Linux kernel and
copy new boot images to the Flash memory as often as required.

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 103

Boot Block

Boot Variables

Reserved

Not used

Linux Kernel

Flash File System

0

128K

512K

4MB

16MB

Boot Block

Boot Variables

Reserved

Not used

Linux Kernel

Flash File System

0

128K

512K

4MB

16MB

Figure 7-4. The flash memory operates as a disk drive.

 The static Ram occupies physical memory space from 800000H to
87FFFFH, the dynamic memory occupies memory space from C0000000H to
C1FFFFFFH and the IO is in memory page 48xxxxxxH. The StrongArm processor
has several serial ports, and two are made available on the development platform.
An Ethernet controller is also available. A pre-configured version of Linux is included
in the Flash memory to support this hardware platform. The elements configured into
the kernel are shown in Figure 7-5.

Linux Kernel

Shell

Class Drivers

Device Drivers

Hardware

Applications
Programs

Kernel

Host Controller Driver

EZ-Host/EZ-OTG

Kernel

Console Driver

TTY Driver

Serial Port

Kernel

File Driver

FSS Driver

Flash Disk

Kernel

Network Driver

Enet Driver

Ethernet

HUB Driver

TO
DO

Linux Kernel

Shell

Class Drivers

Device Drivers

Hardware

Applications
Programs

Linux Kernel

Shell

Class Drivers

Device Drivers

Hardware

Applications
Programs

Kernel

Host Controller Driver

EZ-Host/EZ-OTG

Kernel

Console Driver

TTY Driver

Serial Port

Kernel

Console Driver

TTY Driver

Serial Port

Kernel

File Driver

FSS Driver

Flash Disk

Kernel

File Driver

FSS Driver

Flash Disk

Kernel

Network Driver

Enet Driver

Ethernet

Kernel

Network Driver

Enet Driver

Ethernet

HUB Driver

TO
DO

Figure 7-5. Starting Linux kernel implementation

USB Multi-Role Device Design By Example

104

USB Host Controller Driver
 The EZ-Host/EZ-OTG host controller driver is built using three major pieces
as shown in Figure 7-6. The host controller driver (hcd) accepts USB Request
Blocks (URBs) from the kernel; hcd uses a low-level communications driver (lcd) to
communicate with the EZ-Host/EZ-OTG component; and the virtual root hub driver
(hcd_rh).

Low-level Communications Driver (lcd)

Host Controller Driver (hcd)

Root Hub Driver (hcd_rh)

URBs IN

lcp commands OUT

Low-level Communications Driver (lcd)

Host Controller Driver (hcd)

Root Hub Driver (hcd_rh)

Host Controller Driver (hcd)

Root Hub Driver (hcd_rh)

URBs IN

lcp commands OUT
Figure 7-6. Structure of EZ-Host/EZ-OTG host controller driver.

 We studied the operation of a host controller driver in Chapter 5. The Linux
implementation in this chapter essentially does the same task but has been
expanded to support up to four root hubs. This driver is processing many lists as
shown in Figure 7-7.

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 105

Iso

Int

Control

Bulk

Send to
CY16 SIE0

Receive
from CY16

Receive
from CY16

Send to
CY16 SIE1

Root
Hub?

Process
Locally

Submit
URB

Y

N

32 URB Q’s
per active device

4 TD Q’s 2 NextFrame
TD_Lists

2 PreviousFrame
TD_Lists

Iso

Int

Control

Bulk

Send to
CY16 SIE0

Receive
from CY16

Receive
from CY16

Send to
CY16 SIE1

Root
Hub?

Process
Locally

Submit
URB

Y

N

32 URB Q’s
per active device

4 TD Q’s 2 NextFrame
TD_Lists

2 PreviousFrame
TD_Lists

Figure 7-7. Host controller driver processes lists

 The Linux kernel calls Submit_URB to initiate a USB transfer. The hcd first
checks if the URB is targeted for one of the root hubs and diverts it if necessary. The
hcd supports four root hubs, and this processing is described later. It is essential that
multiple URBs sent to the same device endpoint are kept in order so the hcd
manages up to 32 queues per active device – this equates to 16 input endpoints and
16 output endpoints as required by the USB specification.

 The hcd will scan through the URB queues during its Idle_Task and will
create one or more Transfer Descriptors (TD) for each new URB. The hcd will add
these TDs to the TD_List matching the type of transfer that the URB requires
(isochronous, interrupt, control or bulk).

 Every 1 msec the hcd must supply a new NextFrame TD_List for each SIE
within the EZ-Host/EZ-OTG component. It creates this list by examining the status of
the TD_List from the previous frame and also including new transactions from the
queued TD_Lists. It allocates TD’s in order as defined by the UHCI specification:
isochronous first, followed by interrupt, then control and bulk if time is available in the
frame. Even though each SIE on the EZ-Host component has two host ports, the
12Mb/s bandwidth is shared, so the hcd need only be concerned that it is filling each
NextFrame_TD_List to maximum 12 Mb/s capacity. Once the NextFrame_TD_List is

USB Multi-Role Device Design By Example

106

built the hcd will use the lcd module, described next, to send the list to the EZ-
Host/EZ-OTG component.

Low-level Communications Driver
 The example low-level communications driver (lcd) uses the Host Port
Interface (HPI) of the EZ-Host/EZ-OTG component to transfer data. If your
application requires low USB bandwidth then the High-Speed-Serial (HSS) or Serial-
Peripheral-Interface (SPI) could be used. All three mechanisms use the same Link-
Control-Protocol (lcp) that is implemented by the EZ-Host/EZ-OTG BIOS. Figure 7-8
shows the hardware detail of HPI. From the main CPU’s perspective, this is four 16-
bit memory locations and an interrupt line.

arb

Internal
Memory

CPU

nWR
nRD
nCS

nWR
nRD
nCS

nWR
nRD
nCS

nWR
nRD
nCS

A1.A0

nA1.A0

nA1.nA0

A1.nA0

nWR
nRD
nCS

Full
Empty

INT
INT

Full

Ad
dr

es
s

D
at

a
M

ai
lB

ox
St

at
us

Hardware
Status

A0
A1

nCS
nRD
nWR
nINT

D15:0

arb

Internal
Memory

CPU

nWR
nRD
nCS

nWR
nRD
nCS

nWR
nRD
nCS

nWR
nRD
nCS

A1.A0

nA1.A0

nA1.nA0

A1.nA0

nWR
nRD
nCS

Full
Empty

INT
INT

Full

Ad
dr

es
s

D
at

a
M

ai
lB

ox
St

at
us

Hardware
Status

A0
A1

nCS
nRD
nWR
nINT

D15:0

Figure 7-8. HPI hardware detail

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 107

 The main CPU writes to the address register to setup a pointer into the
internal memory of the EZ-Host/EZ-OTG. When the main CPU reads from, or writes
to, the data register it is actually accessing internal memory locations. The address
register is auto-incremented on each data register access so the main CPU can
efficiently read or write blocks of internal memory. This HPI channel has priority
access to the internal memory, and a transfer rate of 16MB/sec is achievable.

 A main CPU write to the mailbox register will generate an interrupt to the EZ-
Host/EZ-OTG CPU informing it that it should come and read the command that the
main CPU has sent. When the EZ-Host/EZ-OTG has completed its command, it
writes a response into the mailbox register, and this generates an interrupt to the
main CPU. When the main CPU reads this response from the mailbox the EZ-
Host/EZ-OTG CPU will be alerted via a separate interrupt. For those readers who
remember the 8042 used in the early PC AT design to control the keyboard, this is
the same mechanism but at least two orders of magnitude more capable!

 The main CPU can also read a status register that summarizes the state of
the pending interrupts of the EZ-Host/EZ-OTG component.

Link Control Protocol
 BIOS implements a Link Control Protocol (LCP) to assure reliable data
transfer using HPI (or HSS or SPI). The base set of commands is shown in Figure 7-
9. You have learned, from previous chapters, that you can change or augment this
command set to better suit your application.

COMM_RESET
COMM_JUMP2CODE
COMM_CALL_CODE
COMM_WRITE_CTRL_REG
COMM_READ_CTRL_REG
COMM_READ_XMEM
COMM_WRITE_XMEM
COMM_EXEC_INT

Figure 7-9. Base LCP Commands

 Additionally a set of parameter registers, COMM_REG 0 through
COMM_REG13, is also defined since all of the commands require data values. BIOS
only implements a single parameter block, and this means that lcp commands must
be executed serially. Typically hcd will generate many lcp commands, so lcd
implements a queue and passes lcp commands to BIOS in the time order that they
were requested. BIOS will generate a response for each command, and lcd will
stage the next lcp command while executing the callback for the previous lcp
command.

USB Multi-Role Device Design By Example

108

Root hub functionality
 A root hub is a special case – it has all of the attributes of a standard hub (as
defined by the USB specification), but it is not connected downstream of the USB
host controller; it is embedded inside the host controller. From a software
perspective this means that hcd should route URBs targeted at the root hub directly
to a local hub driver rather than create TDs to be scheduled on the bus.

 During initialization hcd will call rh_connect. The root hub module provides
all of the descriptors required for a hub and simply does a USB_connect. The Linux
USB core software will enumerate this device in the standard way and discover that
its descriptors define it to be a hub. The kernel will therefore match the root hub with
its hub class driver and will initialize it! It will create a device object and assign a
USB_device ID to it. The Linux kernel is USB aware, and its core supports USB
device enumeration and several USB class drivers. Our example uses the Linux
kernel code and, therefore, there is not a lot of new code that we have to write to
support root hub operation. Our example will actually call rh_connect four times to
support the four root hubs on the EZ-Host component.

 The root hub module will make calls into lcd to send commands and read
status from the EZ-Host/EZ-OTG component.

Testing our host controller
 The hcd example code is written to be part of the kernel code. During
development we started writing the code as loadable modules but had problems with
the order that the Linux kernel would initialize the subsystems – we fixed this with
static binding into the kernel. We found that it took only about a minute to rebuild a
kernel image after making changes to hcd and so continued on this route.

 Open the Cypress/USB/OTG-Host/Source/coprocessor/linux directory and
identify a Linux kernel configuration file called .config. I ran “$make config” from a
bash window and selected options from the main build menu to create this example.
Figure 7-10 summarizes the options chosen.

Kernel

Host Controller Driver (hcd, lcd, hcd-rh)

EZ-Host/EZ-OTG

Kernel

Console Driver

TTY Driver

Serial Port

Kernel

File Driver

FSS Driver

Flash Disk

Kernel

Network Driver

Enet Driver

Ethernet

HUB HID Audio Mass Storage

Kernel

Host Controller Driver (hcd, lcd, hcd-rh)

EZ-Host/EZ-OTG

Kernel

Console Driver

TTY Driver

Serial Port

Kernel

Console Driver

TTY Driver

Serial Port

Kernel

File Driver

FSS Driver

Flash Disk

Kernel

File Driver

FSS Driver

Flash Disk

Kernel

Network Driver

Enet Driver

Ethernet

Kernel

Network Driver

Enet Driver

Ethernet

HUB HID Audio Mass Storage

Figure 7-10. Linux configuration for coprocessor example.

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 109

I then ran “$make dep” to create the required dependency lists and then

“$make Image” to create a bootable Linux kernel image which I named linux.img.
Full instructions on building a kernel and downloading this into the Flash memory of
the StrongArm development board are detailed in the Cypress document “CY3663
Hardware User's Manual.” Follow these instructions to download vmlinux.img.
Attach the OTG mezzanine board to the StrongArm board and an RS232 cable to
serial port 1 of the StrongArm board. This RS232 cable should be attached to your
development PC that is running a terminal program, such as Hyperterminal, at
115200 baud. Your hardware should look like the setup shown in Figure 7-11.

As a download alternative you could set up your Firmware Development PC
to be a tftp host. This Ethernet connection is explained in the “CY3663 User's
Manual” and is worth the effort to set up if you plan on creating a range of Linux
images for development and debug. This is also shown in Figure 7-11.

Firmware Development PC

Serial
Cable

READY

CPU

Ethernet Cable
Hyperterminal

(or similar)

EZ-OTG
Mezzanine

Board

StrongArm
Single Board

Computer

Firmware Development PC

Serial
Cable

READY

CPU
READYREADYREADY

CPUCPU

Ethernet Cable
Hyperterminal

(or similar)

EZ-OTG
Mezzanine

Board

StrongArm
Single Board

Computer

Figure 7-11. Hardware ready to test coprocessor example

USB Multi-Role Device Design By Example

110

 Set the DIP switches on the StrongArm board to all OFF and set the
mezzanine DIP switches to all OFF. Now attach power to the mezzanine board or the
StrongArm board. The mezzanine board will be held in RESET while the StrongArm
board boots the Linux kernel from its Flash memory. The LCD display will display
“Initializing…”, and a verbose collection of kernel messages will be displayed on the
terminal. These messages will indicate the progress of the Linux initialization. The
LCD display will then change to “Ready”, and you will be prompted to Login. Use the
username “root.” You now have a complete embedded Linux system ready for
action! Explore the directory structure and files within the Flash file system, and note
that you have a USB hcd installed.

 You can now plug USB devices into the mezzanine board. They will be
identified and a description will be displayed on the terminal. You can try whatever
you have in your lab but I would recommend attaching a set of USB speakers to one
mezzanine port and a portable Flash drive into the other. Both will be recognized
and will match class drivers integrated into the vmlinux.img kernel. The Flash drive
may not automatically mount its filesystem – if not enter “mount –t vfat
/dev/sda1 /mnt/usbhd.” Now copy cypress.wav from the root file system onto
your flash drive. If you have a large wav file on your flash drive already then you can
use that in the next step.

Now enter the following:

 ./bplay -d /dev/dsp -s 11000 -b 8 /mnt/usbhd/cypress.wav

You will hear sound on your speakers.

 Bplay is using bulk transfers (via the mass storage class driver) to read data
from the Flash disk and is using isochronous transfers (via the audio class driver) to
send this data to your speakers. The transactions were set up using control and
interrupt transfers. All of this data is passing through our hcd and being passed to
the mezzanine board by lcd.

 The EZ-Host/EZ-OTG based host controller is working!

 The Cypress Release CDROM contains many more examples. Starting from
C:/Cypress/USB/OTG-Host/Source/coprocessor, look in the following subdirectories:

� de_app
� linux/drivers/usb/cy7c67300/dedrv
� linux/drivers/usb/cy7c67300/usbd/dedev

Again all of the source code and build scripts are provided so that you can get a head
start on your project. Some of these examples use Linux as a device and some as a
dual-role device. A device driver template, originally written by Lineo, was used to

 Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller

 111

develop a device-side function driver that was readily integrated into the Linux kernel.
Linux has rich USB support and we are beginning to see this same underlying
support being added to other embedded operating systems.

Chapter Summary
 We integrated the EZ-Host/EZ-OTG into a system as a co processor. We
chose a system that was already USB-aware so that we could focus on the EZ-
Host/EZ-OTG aspects of the project. As a co processor the EZ-Host/EZ-OTG
managed up to four root hubs (two when using the EZ-OTG) on behalf of an
embedded Linux implementation. This off-loading of the USB communications task
gave the Linux “main” CPU more time to implement other tasks.

 We essentially swapped out a PC-based UHCI controller driver for an
embedded EZ-Host/EZ-OTG based driver. The project was well defined since
standard Linux device driver interfaces were used. We developed a low-level
communications driver to isolate the hardware dependencies from the host controller
driver. Since Linux is USB-aware it includes many USB class drivers and we
demonstrated moving a wav file from a mass storage device to an audio device.

 Throughout this book the EZ-Host/EZ-OTG components have been used in a
wide range of applications. Example code has been provided for each application
and the source code and build scripts will enable you to choose an example close to
your intended use and tune it to best fit your application solution.

 I trust that this book has given you a head start with unlocking the potential
within the EZ-Host and EZ-OTG components.

 I wish you success in your USB Design projects

 John Hyde

USB Multi-Role Device
Design By Example

John Hyde

U
S

B
 M

ulti-R
ole D

evice D
esign B

y E
xam

ple John H
ydePrinted by Cypress Semiconductor Corporation

Connecting From Last Mile to First MileTM

www.cypress.com

	Table of Contents
	List of Figures
	Chapter 1: Expanding the USB Applications Range
	Original USB Design Intent
	Host Role Responsibilities
	Ease of Use
	Dual Role Device Implementation
	Transforming into a host
	Chapter Summary

	Chapter 2: Getting to know EZ-Host and EZ-OTG
	Hardware features
	Central Processing Unit
	Memory Expansion Capability
	Additional EZ-Host Capability
	Integrated Timers
	Power Management
	USB Capabilities
	Parallel IO
	Serial IO
	IO Summary
	Firmware Features
	BIOS Operation
	BIOS Memory Management
	BIOS Idle Task
	BIOS Scan Operation
	Other BIOS functions
	Chapter Summary

	C
	Chapter 3: EZ-Host/EZ-OTG Development Environment
	CY16 Firmware Architecture
	Frameworks Subsystem
	Simple Example #1 - Hello World
	Target System
	Simple Example #2 – Using Scan Records
	Simple Example #3 – Buttons and Lights Device
	Simple Example #4 – BAL Host Program
	Simple Example #5 – Standalone BAL Device
	Chapter Summary

	Chapter 4: Developing a host application
	Key Host Controller Concepts
	Frameworks Host Controller Implementation
	Device Identification
	Simple Example #6 – Buttons and Lights Host
	Chapter Summary

	Chapter 5: Concurrent operation as a host and device
	Simple Example #7 – Concurrent BAL Host and Device
	Simple Example #8 – Using Scan Records 2
	Smart USB Devices
	Data Acquisition Example
	Video Black Box Example
	Chapter Summary

	Chapter 6: Designing a dual-role device
	New dual-role concepts
	Simple Example #9 - Dual-role Buttons and Lights Device
	Simple Example #10 – Standalone Dual-role Buttons and Lights Device
	OTG behind-the-scenes
	Session Request Protocol
	Chapter Summary

	Chapter 7: Using EZ-Host/EZ-OTG in co-processor mode as a USB host controller
	USB Host Controller Driver
	Low-level Communications Driver
	Link Control Protocol
	Root hub functionality
	Testing our host controller
	Chapter Summary

