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Foreword by Brian Booker 
 
 

 We were pleased to get John Hyde to write this book on 
Cypress Semiconductor’s behalf.  It should be considered a 
supplement to his “USB Design By Example” in the same 
way that the OTG Supplement complements the USB 2.0 
Specification.  Only the new elements of multi-role device 
design are covered since these build on the established 
base defined by the USB specification. 
 Cypress Semiconductor supports all facets of USB 
design and has products covering the breadth and depth of 
possible USB solutions.  The two products described in this 
book, the CY7C67200 EZ-OTG Host/Peripheral Controller 
and the CY7C67300 EZ-Host Host/Peripheral Controller will 
enable new designs particularly in the portable applications 
arena.  This book, with the support of other Cypress 
documentation, should get your USB product idea rapidly 
into development and then into the prototype stages.  We at 
Cypress Semiconductor are dedicated to supporting your 
design efforts through production and 24 hour support is 
available at www.cypress.com. 
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Chapter 1:  Expanding the USB Applications Range 

 USB has come a long way since its inception as a desktop PC expansion 
bus in 1995.  The USB Specification defines a master-slave communications system 
and details two distinct roles – a host that is in control of all communications and a 
function that provides services to the host.  Initial implementations partitioned these 
roles into individual silicon components.  The recent “On-The-Go” (OTG) Supplement 
extends the original usage model for USB by adding the capability to build a dual-role 
device.  Cypress Semiconductor has gone one step further with their EZ-Host and 
EZ-OTG components that integrate up to four hosts and two functions into a single 
component.  These multi-role devices are fully programmable and enable a wider 
range of USB-solutions to be developed. 
 
 It is time to revisit the original USB specification, the additions made with 
USB 2.0 and the OTG Supplement, to fully understand the requirements of a “host” 
and a “function”.  This introduction distills this information into the essential elements 
that you need to understand in order to make rapid progress on multi-role device 
designs.  Even if you consider yourself as “USB-savvy” I would recommend reading 
this introduction since it contains key definitions that will make the remainder of the 
book easier to follow. 
 

Original USB Design Intent 
 USB was originally conceived as a desktop PC expansion bus.  The external 
IO connectivity of the mid-1990’s PC was based on serial ports and parallel ports – 
these interfaces used different connectors (which were physically large) and only 
offered point-to-point connections to peripherals.  Various schemes were proposed 
so that devices could be daisy-chained on parallel ports but these did not receive 
wide adoption.  There were also new peripherals, such as the telephone, that needed 
to be attached to the PC and needed additional capabilities that the serial and 
parallel ports could not provide. 
 
 USB was introduced in 1996 as a single-connector, protocol-based, serial 
bus to address the requirements of PC peripheral expansion.  It supported two 
speeds, low at 1.5Mb/s and full at 12Mb/sec, suitable for many desktop PC 
expansion peripherals.  Capabilities such as hot-insertion, support of isochronous 
(time-dependant information such as digital audio) data and a unified operating 
system driver model were also included.  Also, for the first time, power was defined at 
the connector so that a peripheral device could officially consume current from the 
PC’s power supply.  Figure 1-1 shows the major elements defined by the first USB 
specification. 
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PC Host

IO Device

Hub

Upstream

Downstream

USB cables to other devices

PC Host

IO Device

Hub

Upstream

Downstream

USB cables to other devices   
Figure 1-1.  Standard USB terminology 

 It is important to emphasize that USB is a Master/Slave bus; it is defined to 
have one master and many slaves.  The motivation behind this decision was lower 
system cost; this decision puts all of the complexity in the PC host since this is only 
implemented once. This enables the devices to be simple, therefore low cost. This 
implementation defines the two roles that exist in a USB environment: the host role 
that controls the communications and the function role that provides services to the 
host.  A function may be a hub that is responsible for propagating USB signaling and 
power, or a device that is the target for USB data communications.  In this context, a 
multi-role device can operate as one or more hosts and one or more devices — 
either independently or simultaneously.  A multi-role device will typically not have the 
signal propagation properties of a hub, but later chapters will show that this crisp 
distinction is also becoming hazy. 
 
 In April 2000 a third speed of 480 Mb/sec was added in the USB 2.0 
specification.  The “PC expansion bus” usage model did not change, and the higher 
speed enabled high bandwidth peripherals such as mass storage devices and high 
frame rate video cameras. 
 
 The “OTG Supplement” to the USB 2.0 specification was approved in 
December 2001, and it extended the “PC expansion bus” usage model to essentially 
allow “peripheral devices to talk to each other without a PC.” The USB protocol 
requires a host to communicate to a device; therefore one of the peripherals must 
assume the role of a host in order to enable this communication. Until this 
supplement was approved, a host had always been a PC – with this premise come 
many assumptions that need to be understood if we want a battery-powered, non-
programmable, embedded system such as a digital still camera to become a USB 
host. 
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 So lets look deep inside the USB specification to understand the 
responsibilities of a USB host.  Our goal is to discover the essential requirements of a 
“minimal-host” – something that can effectively communicate and exchange data with 
a standard USB peripheral.  
 

Host Role Responsibilities 
 The most important task for a USB host (and, for that matter, a USB device) 
is to manage and keep system power to a minimum.  Data communication is a 
secondary task, and both must be done with the over-riding philosophy being ease-
of-use.  Figure 1-2 shows a simplified diagram of a USB device about to be 
connected to a USB host.  The diagram shows a low/full speed connection – a high-
speed connection also starts this way but the biasing resistors are later disabled 
during the speed negotiation phase. 
 

 

Device 
Controller 

Host 
Controller 

1K5

15K 

15K 

Dual Biasing 
Resistors 

Biasing Resistor 

USB Cable 

Host Device 

Vbus 
D + 
D - 

Gnd 

Vbus 
D + 
D - 

Gnd 

Series A 
Connector

Series B 
Connector

Current 
Limiter 

 
Figure 1-2.  Basic host to device connection 

 
 A host is required to make 100mA available for a device during attachment to 
the bus.  The device is required to signal its presence to the host, by attaching it’s 
biasing resistor to D+ or D-, within 100msec of first consuming power from the bus.  
Note that if the device does not signal within 100msec then the host is not obligated 
to continue to supply power, and it may limit or disable current flow.  Currently no PC 
hosts enforce this specification rule so using USB as 5volt, 100mA power supply has 
spawned products such as the USB desklamp and USB fan as shown in Figure 1-3.  
One day these non-compliant, USB products will only work for 100 msec… 
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Figure 1-3.  Products that misuse USB as a power supply 

 
 Devices use up to 100mA during enumeration and may then request up to 
500mA for operation.  Providing 0.5 watts or 2.5 watts of power is not a problem for a 
PC host that is plugged into a main power source, but these values are large for a 
laptop PC and VERY large for a camera that may want to be a host.  Lets study what 
is REALLY required. 
 
 Look again at Figure 1-2.  The device is not required to consume up to 
100mA from the host.  If the device had its own power source (in USB specification 
terms, it is self-powered), either its own main power connection or batteries, then it 
could enumerate without consuming any power from the host.  The device would use 
the presence of Vbus to know that it was attached to a host and would therefore 
signal its presence by attaching its biasing resistor. 
 
 The idea that a battery-powered host can enumerate a battery-powered 
device is looking promising.  A host does not need to power the other device.  Since 
the target application range of multi-role devices is portable equipment, then it looks 
as if we have the makings of a solution.  More engineering is required to ensure 
reliable operation and interoperability with all USB devices. The details of Vbus 
detection and sequencing are discussed later in this chapter. 
 
 The host is also responsible for initiating all communications.  USB uses pre-
formatted packets to exchange data between a host and a device.  The host is 
required to broadcast Start-Of-Frame (SOF) packets every millisecond (accurate to 
500ppm).  The host then sends addressed packets to targeted devices to read and 
write data.  For a detailed description of this process refer to my “USB Design By 
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Example”. The data transfer operation of a dual-role device follows the USB 
specification exactly. 
 The host is responsible for detecting that a new device has been attached to 
USB and, as part of the enumeration process, it must assign a unique address to this 
new device.  The host then reads the device descriptors to discover the identity of the 
newly attached device, and it uses this information to assign and activate a device 
driver.  The device driver completes the enumeration by enabling the new device with 
a Set_Configuration command. 
 
 A PC host will have a vast collection of device drivers available to support 
whatever USB device is attached.  An embedded host is likely to support only a few 
devices - typically only a few devices are relevant to a particular embedded host.  
The OTG Supplement calls this a Targeted Peripheral List and enables an embedded 
host to support a known collection of devices without needing a hard drive full of 
device drivers. 
 
 So, the USB specification does not require that you use a PC as a host.  We 
can define a “limited capability” host that has features suitable for an embedded 
system.  The next section looks at the dual-role device as defined by the OTG 
Supplement and discusses the features added on top of the base requirements.   
 

Ease of Use  
 Any extension or supplement to an existing standard must be done in a 
compatible and user-friendly way such that the inherent goodness of the standard is 
not compromised in any way.  There were many opportunities for the OTG 
Supplement to diverge from the base USB Specification, so I must applaud the 
specification engineers for pre-solving every detail and enhancing the overall 
goodness of USB with OTG. 
 
 Much of the “goodness” of USB stems from its ease-of-use.  The user's view 
of USB is effortless plug-and-play.  But ease-of-use is a double-edged sword – it 
requires MORE effort and diligence on the product designer’s part.  We must design-
in ease-of-use, and we shall see that the OTG Supplement requires it. 
 
 The system setup shown in Figure 1-4 is used as a vehicle to describe the 
details of a dual-role device. A digital still camera and a printer are connected via two 
USB ports to a PC. In Figure 1-5 the PC has been removed and the camera is 
connected directly to the printer.  How is the design of a dual-role camera different 
from a device-only camera?  
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Upstream

Upstream

Upstream

Upstream

 
Figure 1-4.  PC host with two devices 

 

Upstream

Upstream

Upstream

Upstream

 
Figure 1-5.  Embedded host and one device 

 

Dual Role Device Implementation 
 First and foremost, a dual-role device is required to operate as a standard 
USB device.  In this device role, the camera is attached via a USB cable to the PC; 
this cable has its upstream, or A, connector plugged into the PC host and its 
downstream, or B, connector plugged into the camera.  A camera will likely use a 
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Mini-B connector rather than a standard B connector due to its much smaller size.  
The Mini-B connector was added to the USB specification in October 2000.  Let us 
assume, for the moment, that the printer uses a standard B connector – we will 
consider the case where it uses a mini connector later.  A dual-role device will use a 
Mini-AB connector as shown in Figure 1-6. 
 

 
Figure 1-6.  Mini-AB and standard-B connectors. 

 
There is an extra pin in the Mini-AB connector, called ID, but there is not an 

extra wire in the cable.  A Mini-AB connector can accept a Mini-A plug or a Mini-B 
plug shown in Figure 1-7.  The ID pin of a Mini-A plug is connected to ground while 
the ID pin of a Mini-B plug is left floating.  A dual-role device will implement a pull-up 
resistor on the ID pin so that it can detect the voltage level and therefore determine if 
a Mini-A or a Mini-B plug is installed. 
 



USB Multi-Role Device Design By Example 

8 

 
Figure 1-7.  Mini-A plug and Mini-B plug insert into a Mini-AB connector 

 
 Removing the PC from Figure 1-4 left two A-connectors exposed.  To 
connect the camera to the printer, as shown in Figure 1-5, you would use a Standard 
A-to-Mini-A adaptor on the printer cable or replace both cables with a Standard-B-to-
Mini-A cable.  In either case, a Mini-A connector plugged into the camera alerts it to 
transform itself from a role as a device into a role as a host. 
 
 During the cable swap the printer will have detected loss of Vbus and has 
therefore moved into an “unattached” state and is waiting for “the host to turn on 
again”, i.e. waiting for a valid voltage on Vbus.  Let us also assume that the printer is 
a self-powered device (I haven’t come across one that isn’t) and therefore will not 
require any significant power from Vbus. 
 

Transforming into a host 
 The act of changing the cables interconnecting the peripherals alerted the 
camera of its role change from device to host.  Since the camera has the A-connector 
it is also called the A-device.  The device with a B-connector is called the B-device.  
Realizing that many dual-role devices would be battery powered, the camera does 
not assume its host role immediately – some user action is required to start the 
process.  Why have the connection powered up and actively consuming precious 
battery power if no communication is taking place? 
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 When the camera is ready for action it drives a valid voltage on Vbus, and 
this is recognized by the B-device (printer).  The camera enumerates the printer to 
ensure it can support it, transfers the picture that needs to be printed and then 
suspends the bus and removes Vbus. 
 
 But what if the B-device wanted to request some service from the host – how 
can it signal the A-device/host with no Vbus?  The OTG Supplement authors added 
the concept of a session.  When the connection is not being used it is in a power 
saving or dormant state.  A Session Request Protocol (SRP) is defined in a way that 
allows the B-device to request the A-device/host to turn on Vbus to initiate a session.  
The OTG supplement defines two methods that the B-device can use to signal the A-
device;  one pulses a data line while the other pulses the Vbus line.  An A-device 
must be designed to accept at least one of these methods and B-devices should be 
designed to use both methods.  An example of the SRP is detailed in Chapter 6. 
 

A host is required to be able to supply 8mA. A battery-powered host can 
supply 8mA far more easily than supplying 100mA.  You may design a dual-role 
device that supports greater than the minimum of 8mA as required by the 
specification – this will allow the dual-role device to support low-power, bus powered 
devices such as some mice and keyboards. 
 
 Well, the easy case of a single dual-role device and a USB peripheral was 
pretty straight forward.  Figure 1-8 shows a more complex situation where the printer 
has been replaced by another camera.  You want to exchange some photos between 
your camera and a friend’s camera.  Both cameras are dual-role devices and will 
therefore have Mini-AB connectors. 
 

 
Figure 1-8.  Interconnection of two dual-role device cameras 
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 Since we are USB design engineers we will know to plug the A-end of the 
interconnecting cable into our camera and the B-end into our friend's camera.  But 
we cannot expect a consumer to know this.  The A-end and B-end look different 
(shown in Figure 1-7), but this subtlety will be missed by most consumers.  The cable 
does fit the opposite way around so, on average, we can assume that 50% of users 
will plug the B end into “our” camera and the A-end into “our friend's” camera.  This 
makes our camera the device and our friend’s camera the host. 
  
 But we need our camera to be the host since we don’t want to be pushing 
unknown buttons on our friend’s camera to make the transfer.  We could flash some 
error light and/or buzzer and force the consumer to study Chapter 6, Subsection 19 
Paragraph 14 of the camera user manual to discover that they should reverse the 
cable, OR we could electronically switch the cable for them. I would recommend the 
second option. The OTG Supplement authors included a Host Negotiation Protocol 
(HNP) which allows the two dual-role devices to interchange roles. 
 
 The A-end of the cable establishes the default-host, and the B-end of the 
cable establishes the default-device.  The HNP, like the SRP, is delightfully simple 
and only involves the switching on and off the biasing resistors.  At the start of the 
sequence the A-host will be driving Vbus and will have a pull-down resistor on the 
data lines as shown in Figure 1-9. 
  
 

USB Cable 

Mini-A
Plug 

Mini-B
Plug 

Vbus 
D + 
D – 
ID 

Gnd 

Dual-Role 
Controller 

1K5

15K

15K

15K

Vbus 
D + 
D – 
ID 

Gnd 

Dual-Role 
Controller 

1K5 
15K 

15K 

15K 

Dual-role device with Mini-AB connector Dual-role device with Mini-AB connector 

Note connection 

 
 Default Device A           Default Device B 
 

Figure 1-9.  Default Bias resistor connections 

 
 The default-host (our friend’s camera in this example) will have enumerated 
the default device (our camera) and discovered that it was a dual-role device.  Since 
the default-host doesn’t need to use the USB connection it signals to the default-
device that it can use the bus if it needs to, and then it suspends the bus.  This 
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mechanism uses a standard USB descriptor and a standard USB command.  A new 
OTG descriptor, shown in Figure 1-10, is defined, and the host uses a Set_Feature 
command to enable HNP operation.  This is the same mechanism as Set_Feature 
(WakeUpEnable) so no new theory need be learned here. 
 

Offset Field Value Description 
0 bLength Number Descriptor size = 3 
1 bDescriptorType Constant OTG Type = 9 
2 bmAttributes Bitmap OTG Device Characteristics 

b7..b2: reserved (0) 
b1: HNP supported 1 

b0: SRP supported 2 
(1) True if device supports HNP. If true, SRP must also be true. 
(2) Not used by A-Device during normal operation; used during compliance testing to 

automatically detect B-Device capabilities 

Figure 1-10.  New OTG Descriptor 

 
  The default-device detects the idle state on the bus and removes its pull-up 
resistor.  The default-host detects this SE0 state on the bus and turns on its pull-up 
resistor to signal its ability to be a device.  The default-device detects this pull-up and 
assumes the role of host by driving a reset onto the bus.  This sequence is described 
in more detail in Chapter 6. 
 
 We have electronically “swapped the cable” and our camera is now the host.  
This was done in less than 100msec and this operation is unknown, as it should be, 
to the consumer.  They inserted the cable “backwards” so we swapped it for them.  It 
was increased design complexity, but this resulted in vastly improved ease of use – 
well worth the effort. 
 
 Notice that in all of the system hardware diagrams that included dual-role 
devices, a hub was not included.  This was deliberate.  A hub is not required to 
propagate the changing dc voltage levels defined by SRP and HNP.  If a dual-role 
device detects that a hub is connected  downstream of the Mini-AB connector, then it 
is not permitted to use SRP or HNP signaling.  It is assumed that dual-role devices 
will be directly connected to other USB devices or other dual-role devices. 
 

Chapter Summary 
 Careful study of the USB specification reveals the ability to build a “limited 
capability” USB host.  This host need not provide 500mA or even 100mA of power to 
a device which is self powered.  It is required to supply 8mA.  This host need not 
support every available USB device but should provide a Targeted Peripheral List of 
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the devices that it does support.  The functionality of a limited host can be combined 
with a standard USB device to create a dual-role device. 
 
 The OTG Supplement defines the responsibilities of a dual-role device and 
specifies two protocols, the Host Negotiation Protocol and the Session Request 
Protocol, which propagate USB’s Ease-Of-Use image.  The OTG Supplement adds 
one additional descriptor that is processed using standard USB methods. 
 
  The OTG Supplement is elegant in its simplicity.  The next chapter will 
describe silicon that implements this supplement in two capable components, the EZ-
Host and the EZ-OTG. 
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Chapter 2: Getting to know EZ-Host and EZ-OTG 

 This chapter introduces the hardware and firmware aspects of the EZ-Host 
(CY7C67300) and the EZ-OTG (CY7C67200) components.  You will discover that 
both parts have ample features that can address all of the issues raised in Chapter 1.  
Almost all of the hardware and firmware capabilities are configurable to suit many 
different product implementations, and you are not expected to use every feature in a 
single application.  The firmware development environment uses a fully-configurable 
GNU tool set hosted on a Windows platform; most developers will only use these 
tools.  The development environment is covered in the next chapter. 
 

Hardware features 
 Figure 2-1 shows a block diagram of the EZ-Host and EZ-OTG components.  
The two parts are designed to be software compatible and are supplied in a 100-pin 
TQFP package and a 48-pin FBGA package respectively.  The EZ-Host includes the 
capability to have external memory added while the EZ-OTG can only use its internal 
memory.  Both devices have two Serial Interface Engines (SIEs) that may be 
independently configured as a USB host or as a USB device.  Additionally, one SIE 
has hardware support for an OTG-style, dual-role device.  The EZ-Host has two ports 
on each SIE while the EZ-OTG has one port on each SIE.  Both parts include a BIOS 
in ROM that provides default management of the on-chip resources. 

CPU Interrupt
Control Timers RAM

8K x 16

BIOS
ROM
4K x 16

Serial IOParallel IOMemory
Expand

SIE2SIE1

PLL

P.M.

Pin SharingOTG

USB A USB B USB A USB B

EZ-Host/EZ-OTG

EZ-Host Only

16-bit Internal Buses

CPU Interrupt
Control Timers RAM

8K x 16

BIOS
ROM
4K x 16

Serial IOParallel IOMemory
Expand

SIE2SIE1

PLL

P.M.

Pin SharingOTG

USB A USB B USB A USB B

EZ-Host/EZ-OTG

EZ-Host Only

16-bit Internal Buses

 
Figure 2-1.  Block diagram of EZ-Host and EZ-OTG components 
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Central Processing Unit 
 The CPU is a 16-bit RISC implementation with 16 general-purpose, 16-bit 
registers mapped into memory via a regbank register (which is itself mapped into 
memory) as shown in Figure 2-2.  This mapping technique allows the use of multiple 
register banks, if required, to process high frequency interrupts.  Following a power-
on cycle, regbank defaults to 0100H.  All arithmetic and logical operations set FLAGS 
in accordance with 16-bit computations; the FLAGS register is also mapped into 
memory as shown in Figure 2-2.   The internal architecture is optimized for this local 
memory-to-memory implementation.  
 
 

 R0

R1

R2

R3

R4

R5

R6

R7

FLAGS

R8

R9

R10

R11

R12

R13

R14

R15 = SP

PC

C000H:
C002H:

xxx0H:

In CPU

REGBANK

 
Figure 2-2.  All registers, except PC, are memory-mapped 

 
Registers R0 through R7 are used for general-purpose data manipulations 

and registers R8 through R15 are used as general-purpose pointers or for data 
manipulation.  The instruction set uses R15 as a stack pointer.  The instruction set 
includes a full set of orthogonal addressing modes that are well suited for a modern 
compiler. 
 
 Memory is byte addressable and the instruction set operates on byte 
variables if required (but note that the FLAGS are set assuming 16-bit operands).  
The 64KB memory space is used for code, data, IO locations, and register banks; 
some memory addresses are pre-assigned by the hardware as shown in the memory 
map in Figure 2-3. The BIOS makes additional address assignments – this is 
described in the BIOS section. 
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 There are two programmable, hardware breakpoint registers that may be 
used by a debugger to trap CPU execution events at full speed. 
 

 

C
S1

 
C

S2
 

C
S3

 

BIOS ROM 
8K 

 

Page 2 

Page 1 

 

RAM 
16K 

Fxxx 

Exxx 

Dxxx 

Cxxx 

Bxxx 

Axxx 

9xxx 

8xxx 

7xxx 

6xxx 

5xxx 

4xxx 

3xxx 

2xxx 

1xxx 

0xxx 

Memory mapped IO locations (C0xx) 

External Memory on EZ-Host only 
   Accessed using 3 chip selects 

USB Control/Buffers (02xx) 

Interrupt Vectors (00xx) 

Hardware reset location (FFF0) 

 
 

Figure 2-3.  Hardware assigned memory map 

 

Memory Expansion Capability 
 Only the EZ-Host, in its 100-pin package, supports the addition of directly 
addressable external memory.  This memory can be static RAM or ROM.  BIOS 
makes some assumptions about where each type of memory is located, but the 
hardware just sees it as “external” memory.  Three pre-decoded chip selects are 
available, one for each region, and each region can be populated with 8-bit or 16-bit 
memory with different access times. 
 

Additional EZ-Host Capability 
 The additional pins of the EZ-Host package enable it to support an additional 
IO capability of four PWM channels and an IDE interface.   
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Integrated Timers 
 Both the EZ-Host and the EZ-OTG have three timers – two general purpose 
timers and one watchdog timer that can be enabled to reset the CPU. 
 

 Power Management 
 The CPU and IO devices are designed to operate at 48 MHz.  An internal 
Phase Lock Loop generates this operating frequency from an external clock or crystal 
running at 12 MHz.  The CPU can be slowed using a clock divider (2 through 16) or 
halted to conserve power.  The CPU can also suspend itself, after enabling a variety 
of wakeup sources, to reduce power-consumption to a minimum. 
 
 The CPU core requires 3.0 volts to operate and this may be difficult when it is 
operating on battery power.  Both the EZ-Host and EZ-OTG include an integrated 
power booster than can generate the required 3.0V from a battery that has dropped 
to as low as 2.7 volts.  A few external components are required to implement this 
feature (shown in Figure 2-4), and these are only installed if a stable 3.3V voltage 
source is not available. 
 

 

EZ-Host 
Or 

EZ-OTG 

BoostVcc

Vswitch

AVcc+Vcc

 
Figure 2-4.  An integrated  power booster is used for battery-powered applications 

 
When operating as an OTG host the EZ-Host/EZ-OTG needs to generate a 

VBUS of 5.0 volts.  A charge pump is integrated into each part that enables them to 
generate 5.0 volts from their 3.3V supply if required.  A few external components, 
shown in Figure 2-5, are required for this charge pump.  The EZ-Host/EZ-OTG can 
supply up to 10mA with this circuit, which is sufficient to support low-power, bus-
powered devices such as some keyboards and mice.  Note that if 5.0 volts is 
available in your design then the charge pump circuitry is not used and the external 
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components are not required.  The OTG VBUS connection should still be made since 
the EZ-Host/EZ-OTG requires this for detection and signaling.   
 

 

EZ-Host 
Or 

EZ-OTG 

CswitchA 
 
 
CswitchB 
 
 
OTGVBus VBus

 
Figure 2-5.  An integrated charge pump is used for battery-powered applications 

 

USB Capabilities 
 Much of the functionality of the EZ-Host and the EZ-OTG is centered around 
their USB capabilities.  Both components have two independent Serial Interface 
Engines (SIE) that enable connections to two independent USB segments.  The EZ-
Host supports two USB ports on each SIE while the EZ-OTG supports a single port 
on each SIE.  The “A” connection on SIE 1 additionally supports all the features 
required by the On-The-Go supplement to the USB 2.0 Specification.  It can be 
configured as a host port or a peripheral port and may be programmatically switched 
as required by an application.   
 

You will discover in later chapters that the EZ-Host/EZ-OTG components 
come with a Frameworks firmware development code-base that implements full 
support for the on-chip resources including the logic of the Host Negotiation and 
Session Request Protocols (HNP and SRP).  Figure 2-6 shows a summary of the 
possible USB configurations available with the EZ-Host and EZ-OTG components. 
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OTG 
Port 

Host 
Port 

Peripheral 
Port 

1 1 or 2* 0 
1 0 1 
0 2, 3* or 4* 0 
0 1 or 2* 1 
0 0 2 

* = EZ-Host only 

Figure 2-6.  EZ-Host/EZ-OTG components support several USB configurations 

 

Parallel IO 
 There are up to 25 independent input or output signals on the EZ-OTG 
component and 32 on the EZ-Host component.  Each IO line can source and sink 
4mA.  This parallel IO may be configured as a Host Port Interface (HPI) that provides 
slave control and status ports for an external processor.  Figure 2-7 shows the 
connection of an EZ-Host or EZ-OTG in this mode.  The external processor is 
running some operating system that needs to support USB as a host or as a device.  
This processor will send commands and data to the EZ-Host/EZ-OTG using a full 
Link Control Protocol (LCP) implemented in the BIOS.  In this mode the EZ-Host/EZ-
OTG operates as a (very) smart peripheral and handles all of the low-level USB 
communications on behalf of the external processor.  An example using LCP with a 
Linux host is presented in Chapter 7. 
 

 

“Main” 
Processor 

(Any) 

RAM ROM 

Other IO EZ-Host 
or 

EZ-OTG 

HPI 

Host Device

OS 
Any 

Note: can also  
Connect using 

SPI of HSS 

 
Figure 2-7.  EZ-Host/EZ-OTG support a coprocessor mode 
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Serial IO 
 Both the EZ-Host and EZ-OTG additionally support a variety of serial 
protocols: High Speed Serial (HSS), industry-standard Serial Peripheral Interface 
(SPI), a UART designed as a serial debug port, and I2C.  The I2C interface to serial 
EEPROM is always available and may be used to add code or data to the default 
BIOS configuration (this is described, in detail, in the scan section).  A UART serial 
debug port is always available with the EZ-Host but it is only available when GPIO is 
selected for the parallel IO of the EZ-OTG.  I found that, in general, I did not use this 
serial debug port since better functionality is available via a USB port. 
 
 BIOS also supports a Link Control Protocol (LCP) on the SPI port and the 
HSS port.  Since these protocols do not have direct access to internal memory (the 
HPI port does) then additional data transfer steps must be used.  If your USB 
bandwidth requirements for a co-processor are low then these serial interfaces 
enable a viable alternative to the HPI parallel connection.  A common protocol allows 
different configurations for different applications while preserving the software 
investment.  LCP is described in Chapter 7 with a co-processor example. 
 

IO Summary 
Figure 2-8 summarizes the IO configuration of the EZ-Host and the EZ-OTG 

components in each of the modes. 
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GPIO HPI IDE1 PWM HSS SPI UART 
GPIO31 SCL SCL     
GPIO30 SDA SDA     
GPIO29 OTGID OTGID     
GPIO24 INT nACK     
GPIO23 nRD nRD     
GPIO22 nWR nWR     
GPIO21 nCS -     
GPIO20 A1 DIR     
GPIO19 A0 nRQT     
GPIO15 D15 D15  CTS2   
GPIO14 D14 D14  RTS2   
GPIO13 D13 D13  RxD2   
GPIO12 D12 D12  TxD2   
GPIO11 D11 D11   MOSI  
GPIO10 D10 D10   SCK  
GPIO9 D9 D9   SSI  
GPIO8 D8 D8   MISO  
GPIO7 D7 D7    TX2 
GPIO6 D6 D6    RX2 
GPIO5 D5 D5     
GPIO4 D4 D4     
GPIO3 D3 D3     
GPIO2 D2 D2     
GPIO1 D1 D1     
GPIO0 D0 D0     
 
Additional IO pins of EZ-Host 
GPIO28      TX 
GPIO27      RX 
GPIO26   PWM3 CTS   
GPIO25       
GPIO18  A2 PWM2 RTS   
GPIO17  A1 PWM1 RxD   
GPIO16  A0 PWM0 TxD   
 
Memory Expansion of EZ-Host 
D15    CTS   
D14    RTS   
D13    RxD   
D12    TxD   
D11     MOSI  
D10     SCK  
D9     SSI  
D8     MISO  
D0:7       
A0:18       
Control       
Note 1: EZ-Host only, Note 2: EZ-OTG only 
 

Figure 2-8.  EZ-Host and EZ-OTG IO functionality. 
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Firmware Features 
 The EZ-Host and EZ-OTG components are designed to be software 
compatible and they use the same BIOS.  If BIOS accesses non-existent features on 
the EZ-OTG device then no errors or side-effects are created.  EZ-Host has an 
external memory bus, and BIOS will use this to check for the presence of RAM 
and/or ROM – the EZ-OTG device will always return false to these tests. 
 
 BIOS contains  8KB of very dense CY16 assembler code and this creates a 
default configuration.  The BIOS is designed to be over-rideable in whole (EZ-Host 
only since it supports external memory) or in parts.  It is table-driven and makes 
extensive use of interrupt vectors.  The BIOS is organized as a set of subroutines 
that are accessed via an interrupt vector table in low memory.  This vector table has 
48 hardware vector entries and 80 software vector entries as outlined in Figure 2-9. 
 

 

ret 

ret 

Service Routine 

Service Routine 

Interrupt Vector Table

Software 
Vectors 

Hardware 
Vectors 

0 

49 

127 

48 

sti 

 
Figure 2-9.  Interrupt Service Routines are accessed via a table in RAM 
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The operation of BIOS may be changed by replacing an existing interrupt 
service routine (ISR) or by chaining additional code to an existing interrupt service 
routine (how this is done is described next).  ISR replacement involves replacing the 
routine address in the interrupt vector table with a new address.  Chaining requires 
the existing routine address be saved before being replaced by the new routine 
address.  The new routine, when it has finished its task, jumps to the previous routine 
using this saved address.  If you wanted your new routine to execute AFTER the 
previous routine then you would CALL the previous routine and, once it returned, you 
would execute your new code.  All three examples, pre-processing, post-processing 
and replacement, are shown in Figure 2-10.  Chaining is an important concept and is 
used throughout the BIOS. 
 

ret

Interrupt Vector Table

ret

jmp

call

Pre-process

Post-process

Replacement

ret

ret

ret

Interrupt Vector Table

ret

jmp

call

Pre-process

Post-process

Replacement

ret

ret

 
Figure 2-10.  Changing or enhancing BIOS operation 

 

BIOS Operation 
 The BIOS documentation from Cypress describes, in detail, the default 
operation of all of the assigned interrupt vectors.  There are several unassigned 
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vectors where you can add additional capability and you can change existing vectors 
to change how BIOS operates.  The BIOS documentation defines the facts of 
operation, but three concepts deserve more explanation: Memory Management, 
Idle_Loop, and SCAN. 
 

BIOS Memory Management 
 If you allow the BIOS initialization to complete (you don’t have to, SCAN will 
describe how you over-ride this), BIOS will own all of the un-used RAM, and it 
provides a mechanism to allocate and free memory buffers to running programs.  
Figure 2-11 shows how memory is allocated by BIOS – free memory extends from 
the top of BIOS-use memory to 3FFFH (or 7FFFH if external memory is added to an 
EZ-Host part). 
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Figure 2-11.  BIOS assigned memory map 

 
BIOS uses four software vectors for memory allocation: 

  INT 69  Pointer to first memory allocation block 
  INT 68  Allocate x bytes of memory 
  INT 75  Return previously allocated memory 
  INT 76  Recalculate free memory (error recovery) 
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BIOS uses memory allocation blocks to describe available and used 
memory.  Following initialization there will be two memory allocation blocks;  INT 69 
will point to the first one and this links to the second one.  A memory allocation block 
contains two words – the first word describes how many bytes are present in this 
block and the second word is a busy (= 8000H) or available (= 0) flag.  Figure 2-12 
shows the memory allocation blocks at initialization and also after three memory 
blocks (0x1360, 0x100 and 0x2000 bytes) have been allocated and one block (0x100 
bytes) returned. 
 

Size
Busy/Free

1364
8000

104
0

2004
8000

46F0
0

To EOM
Busy

Vector 69

Vector 69

Size
Busy/Free

1364
8000

104
0

2004
8000

46F0
0

To EOM
Busy

Vector 69

Vector 69

 
Figure 2-12. Typical Memory Allocation Blocks in use 

 
Before I go into more detail I am going to recommend that you do not use 

this mechanism.  It is a good scheme that is useful in allocating data buffers, but the 
problems come later when you want to load code into an allocated memory block 
(this is SCAN described later in this section).  The major issue is that EZ-Host/EZ-
OTG code is not inherently relocatable – any CALL or long JUMP will use an 
absolute address that needs to be “fixed up” prior to execution.  Computed jumps or 
calls are very difficult to fix-up.  SCAN does provide a fix-up mechanism but it 
assumes that code was written in assembler and all of the fix-up addresses are 
readily identifiable.  Almost all of the examples that will be presented in this book are 
written in C, and no automated tool exists to enable a binary image of this code to be 
relocated.  The examples will therefore use statically allocated code and data. 

So why did I spend two pages describing a feature that I don’t want you to 
use?  Well, many routines within BIOS use the mechanisms to allocate memory, so 
we need to be aware that BIOS may think that our program space is “free to be 
allocated.”  The examples that we will create will need to give BIOS some memory 
that it can use.  A sophisticated user may use this capability, but I do not recommend 
it for general use. 
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BIOS Idle Task 
 If we allow the BIOS initialization to complete it will set up an Idle_Task that 
executes a series of routines chained together.  Remember that a chain is as strong 
as its weakest link – the mechanism is good provided we handle it correctly.  BIOS 
uses three software vectors for Idle_Task management: 
 
   INT70  Start of Idle Chain 
   INT71  BIOS’s Idle Task 
   INT72  Insert task into Idle Chain 
 
 The BIOS Idle_Task is a continuous loop as shown in Figure 2-13.  If there is 
no work to do, then the CPU HALTs.  It is brought out of halt by any enabled 
interrupt, which it first services.  The CPU then executes the tasks in the Idle Chain to 
check for additional work to do. When completed it halts again waiting for any 
enabled interrupt. 
 

  

 Idle:     ; Pointed to by INT71 
  addi r15, 2  ; Removed return address from stack 
  halt    ; Wait for an enabled interrupt 
  INT 70    ; Check the Idle Chain 
  INT 71    ; Call myself 
 

Figure 2-13.  The BIOS Idle Loop 

 
Adding a task to the Idle_Chain is implemented via Int72.  You pass a pointer 

to the start of the new task in R0 and a pointer to the next task in the chain is 
returned in R0 – you should jump to this once your task is completed as shown in 
Figure 2-14. 

 
 
 Init_Another_Idle_Task: 
  mov r0, Another _Idle_Task ; Provide pointer to my task 
  INT 72       ; Insert task into chain 
  mov [Next_Task], r0   ; Save pointer to next task 
  ret        ; Initialization complete 
 Another _Idle_Task: 
 ; 
 ; insert your code here, it completes with… 
 ; 
  jmp [Next_Task] 
 

Figure 2-14.  Adding a new task to the Idle Chain 
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 The default operation for BIOS is to initialize its numerous subsystems 
(UART, USB etc) and wait for work to do.  You can over-ride this operation by adding 
code and data using the scan task. 
 

BIOS Scan Operation 
 SCAN is the operation that is used to modify the default operation of BIOS.  
Early in the BIOS initialization it starts looking for “scan signatures” – it looks in many 
places but the easiest to explain is accesses to EEPROM connected to the I2C bus.  
Think of the EEPROM as a provider of a byte stream.  BIOS will start reading from 
I2C address 0 and will continue to read sequentially until it runs out of “scan records.”  
A scan record consists of a header and some data as shown in Figure 2-15. 
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Figure 2-15.  Detail of scan records in EEPROM 

 
Scan checks the first word of a record for the special signature value of 0xC3B6, and 
if a match is not found then SCAN gives up on this byte stream and looks elsewhere.  
If a match is found then SCAN reads the next word as a DATA_LENGTH and the 
next byte as an OPCODE.  There are currently 10 opcodes as shown in Figure 2-16. 
 



 Chapter 2: Getting to know EZ-Host and EZ-OTG 

 27 

Scan continues to look for scan signatures during run time via the USB and UART 
Idle_Tasks.  This will allow program code and data to be downloaded at any time – 
the debugger uses this feature extensively. 
 

Op Code

0

1

2

3

4

5

6

7

8

9

Effect

Copy N-2 bytes to memory starting at ADDR

Copy N-1 bytes to memory pointed to by VEC

Request N-1 byte buffer from BIOS, set VEC to point to 
this buffer.  Copy N-1 bytes into this buffer

Add the real address pointed to by VEC to the following
list of ADDR’s.  This is a relocation fixup.

Jump to ADDR.  BIOS just gave the CPU away

Call to ADDR, return control to BIOS

Execute VEC

Copy N-2 bytes from memory at ADDR1 to I2C at ADDR2
VEC should be 64 or 65 ie I2C_Write

Request a buffer from BIOS, copy N-? Bytes into buffer,
Then copy buffer to I2C at ADDR, then free buffer
VEC should be 64 or 65 ie I2C_Write

Write VALUE into 0xC000 + OFFSET, ie update configuration

Interpret bytes as:

N ADDR D D

N Vec D D

N Vec D D

N Vec ADDR ADDR

2 ADDR

2 ADDR

1 Vec

N ADDR ADDRVec

N ADDRVec D D

N Off Value Off Value

Op Code

0
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Effect

Copy N-2 bytes to memory starting at ADDR

Copy N-1 bytes to memory pointed to by VEC

Request N-1 byte buffer from BIOS, set VEC to point to 
this buffer.  Copy N-1 bytes into this buffer

Add the real address pointed to by VEC to the following
list of ADDR’s.  This is a relocation fixup.

Jump to ADDR.  BIOS just gave the CPU away

Call to ADDR, return control to BIOS

Execute VEC

Copy N-2 bytes from memory at ADDR1 to I2C at ADDR2
VEC should be 64 or 65 ie I2C_Write

Request a buffer from BIOS, copy N-? Bytes into buffer,
Then copy buffer to I2C at ADDR, then free buffer
VEC should be 64 or 65 ie I2C_Write

Write VALUE into 0xC000 + OFFSET, ie update configuration

Interpret bytes as:

N ADDR D D

N Vec D D

N Vec D D

N Vec ADDR ADDR

2 ADDR

2 ADDR

1 Vec

N ADDR ADDRVec

N ADDRVec D D

N Off Value Off Value
 

Note: shaded field indicates a repeated field 

Figure 2-16.  SCAN has 10 defined Op Codes 

 
Take a moment to study the effects of a SCAN operation, shown in Figure 2-

16.  This is a very powerful mechanism that can be used to download new code and 
data into RAM.   
 

I described the EEPROM as a byte stream – SCAN will also accept a byte 
stream from the UART or from USB.  Additionally the Link Control Protocol supported 
by the HPI, SPI and HSS interfaces offers a similar set of capabilities while in co-
processor mode.  These mechanisms make it very easy to load application programs 
into the EZ-Host and the EZ-OTG, and we shall run through some examples in the 
next few chapters. 
 

BIOS has control of the CPU at power-up.  It uses the CPU to execute the 
BIOS code including the SCAN function.  It can load a new program using a variety of 
scan codes.  Now focus on scancode (4).  BIOS can pass ownership of the CPU to a 
loaded program.  The effect of this is that BIOS will not complete its initialization and 
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will not set up its Idle Task.  The loaded program now has the responsibility of owning 
the Idle_Task.  It could set up its own idle task, and this must call the BIOS Idle Chain 
(INT 70) to keep low level functions, such as SCAN, operating, or it could pass 
control back to BIOS via a restart of the Idle_Task. 
 

Other BIOS functions 
 BIOS has a wide array of functions that deal with the low-level details of USB 
communications when operating as a host or as a device.  These are best described 
with the aid of an example, but this means we need to be familiar with the EZ-
Host/EZ-OTG development environment and example Frameworks.  This will be the 
focus of the next chapter. 
 

Chapter Summary 
 The EZ-Host and EZ-OTG components have a great deal of capability that 
we can use to implement a wide variety of USB based products.  Two independent 
Serial Interface Engines (one with dual-role capability) are supported by a 16-bit 
RISC CPU, 16K of RAM, and parallel and serial IO functions.  An integrated BIOS 
provides a default configuration with interrupt service routines to support essential 
low-level operation of all of the hardware features.  The BIOS is over-rideable in 
whole (EZ–Host only) or in parts using a SCAN mechanism. 
 
 The next chapter will show how easy the EZ-Host/EZ-OTG components are 
to use. 
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Chapter 3:  EZ-Host/EZ-OTG Development Environment 

 Firmware development for the EZ-Host/EZ-OTG employs Windows-based 
tools, and this chapter assumes that the Cypress CY3663 DVK is used as a target for 
the example code.  The DVK includes a StrongArm-based single board computer 
(SBC) and two mezzanine boards, one EZ-Host based and the other EZ-OTG based 
as shown in Figure 3-1.  In this chapter we will use the EZ-Host board in standalone 
mode as a vehicle to learn the toolset and debug process.  The tools should be 
installed according to the Cypress documentation. 
 

 EZ-OTG Development Board EZ-Host Development Board 
 

 
StrongArm Single Board Computer 

Figure 3-1.  Development kit includes an SBC and 2 mezzanine boards 
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 Firmware is developed using the GNU Toolset hosted on a Windows-based 
platform via the Cygnus UNIX emulation engine, Cygwin.  The full complement of 
GNU Tools (compiler, assembler, make, linker, debugger and utilities) are provided 
with the CY3663 installation, and these are integrated into a Windows environment, 
and are ready-to-use, as shown in Figure 3-2. 
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Figure 3-2.  Simplified view of CY16 Development Environment 

 
I included DOS tools in Figure 3-2 since they help to describe the GNU tools.  

Windows supports multiple “DOS boxes” within its windowed GUI environment.  A 
DOS command is typically text input via a command line, and it creates text output.  
A series of DOS commands can be combined in a BATCH file (*.bat), and program 
output can be redirected to a text file for later viewing or processing. 
 

All of the GNU tools are also command line based and, like DOS commands, 
may be run interactively or via a command file.  The GNU tools call the command 
scripts, and these are much more sophisticated than their DOS counterparts.  The 
CY3663 DVK includes all of the scripts that you will need for successful development 
– whether this is rebuilding one of the examples or creating your own.  If you don’t 
want to delve into the “how” the tools work then you can just use them and ignore the 
fact that they are GNU-based. 
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 Another huge benefit of using the GNU tools is that the same process is used 
to generate and debug code for the CY16 components (EZ-Host and EZ-OTG) or the 
StrongArm component on the SBC.  [Or, for that matter, ANY processor supported by 
the GNU code generation backend].  We specify the target processor in a makefile. 
 
 The GNU tools include a windowed debugger, called Insight, that sits on top 
of the standard GNU debugger, GDB.  We will use this as part of our development 
process.  Developing CY16 firmware is a straight forward process: we create source 
files and makefile scripts using a good multi-file text editor; we build our object code 
then download it to a target and debug it.  I tell everyone that the software is the easy 
part of an embedded microcontroller project since it is only 1’s and 0’s.  The hard part 
is getting them in the right order 
 

CY16 Firmware Architecture 
 We saw, in Chapter 2, that the EZ-Host and EZ-OTG components have a 
wide range of hardware capabilities that can be employed to implement a wide 
variety of USB solutions.  Harnessing these capabilities into an easy-to-use 
framework was quite a challenge but, by following the methodology outlined in this 
chapter, you will be able to quickly build custom application programs to meet your 
requirements. 
 
 I chose to increment into a full design example using a series of simple 
examples that explore individual features of the CY16 architecture.  Each simple 
example builds on the previous one to create a multi-purpose design example.  I will 
cover several capable design examples in later chapters. 
 
 The BIOS sets up an event-driven environment with chained idle tasks.  
Layered on top of BIOS is a development Frameworks, and layered on top of this 
framework is our application code (simple example or design example).  Each of 
these layers consists of three distinct Tasks as shown in Figure 3-3. 
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Figure 3-3.  CY16 firmware is layered and is task based 

 
 The Init_Task is responsible for setting up the Idle_Task and any 
CallBack_Tasks.  The Init_Task is only run once, so any memory it uses may be 
returned after it has executed.  After execution, the Init task returns control of the 
processor back to the caller. 
 
 The Idle_Task must honor an Idle_Chain.  All of the Idle_Tasks are 
dynamically linked together and each is responsible for maintaining this chain.  There 
is no central kernel that is scheduling tasks.  The primary scheduling mechanism is 
hardware interrupts.  When not serving interrupts, the Idle_Task of each software 
subsystem runs and looks for work to do.  Each subsystem calls the next using the 
chaining mechanism.  The chaining mechanism is simple and involves a single call 
as will be shown in the examples. 
 
 CallBack_Tasks are procedures that are run as a result of some event 
occurring.  This event could be a hardware interrupt, a software interrupt or some 
processing in an Idle_Task that created some work to be done. 
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 All firmware that we develop for the EZ-Host/EZ-OTG will follow this format of 
Init_Task, Idle_Task and CallBacks.  Each of the tasks is drawn as a single block in 
Figure 3-3, but this should not infer that each block is a single, monolithic procedure.  
The Init_Task and Idle_Task have a single entry point but will typically contain 
multiple procedures. 
  

Frameworks Subsystem 
 The Frameworks subsystem, drawn as a single layer in Figure 3-3, contains 
a wide range of subsystems implemented at the application subsystem layer – our 
application is just one of the subsystems that it manages.  Basically, if the EZ-
Host/EZ-OTG has a hardware capability then Frameworks has a software subsystem 
to support it.  Frameworks also contains software subsystems to manage the 
hardware on the mezzanine boards – buttons, dipswitches, LEDs, and seven 
segment display. 
 
 The Frameworks subsystem is built from the source files in the COMMON 
directory.  Take a quick look into this directory and note that the common module list 
is very complete.  Each module is designed around a CY16 capability, and individual 
features are contained within conditional compilation directives. You will not need to 
edit any files in this directory, but Frameworks is supplied in source format for those 
users who want to. A single file in each application directory, called fwxcfg.h, is used 
to select which features of Frameworks should be included to support the application 
program.  My first set of “simple examples” will use pre-configured fwxcfg.h files, and 
we shall learn how to edit fwxcfg.h in a later chapter. 
 

Simple Example #1 - Hello World 
 The first program we always write is “Hello World” where “Hello World” is 
displayed on a console.  Our target system, the EZ-Host mezzanine board, does not 
have a console, but it does have a seven-segment display and some buttons.  Our 
“Hello World” program will first display the letter “H” on the seven-segment display 
then advance through the other letters of hello as we press any button.  This uses 
next-to-no features of the EZ-Host (hardware or BIOS) allowing us to focus upon the 
process of creating and debugging a program in this environment. 
 
 All of the source files for se1 (simple example #1) are contained within the 
se1 directory.  If you have installed the Cypress CD-ROM in its default location, all of 
the simple example directories will be located in C:\Cypress\USB\OTG-
Host\Source\stand-alone.  Figure 3-4 shows a source listing of app.c.  The only 
initialization in the Init_Task warns BIOS that we are using some memory.  The 
button debouncing and press event is handled within Frameworks, so all we have to 
do is install a Callback_Task, with a pre-defined name, to handle this event.  
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Frameworks also handles driving the seven segment display, so we just call one of 
its IO routines.  So how do we build and debug our three-line application program? 
 

 
 
/* Application data. */ 
// Declare the Hello Message in Seven Segment Display "font" 
const uint8 HelloMessage[] = { 0x7F, 0x89, 0x86, 0xC7, 0xC7, 0xC0, 0xFF }; 
static uint16 HelloIndex; 
 
// Declare the app_init_task 
void app_init(void) { 
// Tell BIOS that we, and the GDB stub, are in memory.  For DEBUG only     
    __asm( "mov r0, 0x1360"); 
    __asm( "int %0" : : "n" (ALLOC_INT) ); 
    app_button_handler (0);    // Clear the display 
} 
 
// Declare the app_idle_task.  No work here, see Button Callback 
 
// Declare the CallBack routines 
void app_button_handler( BUTTON button ) { 
// Advance through the display text on any button press 
 if (HelloIndex++ > sizeof(HelloMessage)-2) HelloIndex = 0; 
 write_cpld (SSD_WRITE, HelloMessage[HelloIndex]);  
} 
 

Figure 3-4.  Our first example application program 

 
Within the se1 directory there are several other files.  I created the 

Frameworks configuration file, fwxcfg.h, and there is no need for you to look at this 
yet (you will have ample opportunity later).  There is a makefile script that defines the 
rules of how our simple example should be built.  The makefile will use a linker script 
(se1.ld) to locate our program at 1000H (why is described in the next section).   
There is also a DOS batch file called bash_env.bat that we will use to save a lot of 
typing. 
 

Target System  
 Before building our application program we need to consider the capabilities, 
and constraints, of our target system.  Our first example will use the EZ-Host 
mezzanine board in standalone mode.  Note that the EZ-OTG mezzanine board 
could also be used for this example, and it will produce identical results.  Figure 3-5 
shows key features of the mezzanine board. 
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Figure 3-5.  Key features of a mezzanine board 

 
 We will attach the mezzanine board to our development system using a USB 
cable to SIE2.  Note that all dip switches will be set to OFF.  The BIOS contains a 
default USB device descriptor, and this will be used to enumerate a connection. This 
default device uses a VID/PID of 0x4B4/0x7200, and this will load a CyUSBGen.sys 
device driver (this, and the INF files that set up this relationship, were installed when 
the toolset was installed).  CyUSBGen.sys is a custom device driver that creates a 
DOS device called USBSCAN – this device uses vendor-defined commands to send 
a byte stream to the mezzanine board  (byte stream was discussed in the SCAN 
section of Chapter 2).  This connection will be used by the debugger.  
  
  Let’s first tell the GNU tools that we will be debugging our software on a 
remote target (i.e., not using the PC’s processor).  Double-click the bash_env.bat 
icon in the se1 directory – this will open a DOS window and then start a bash shell.  
At the prompt enter “cy16-elf-libremote -u.”  This will start a standardized tool 
that the debugger will look for when it runs – libremote is the bridge between the PC-
hosted debugger application and our remote target. 
 
 When the debugger runs, libremote will copy a small stub program onto our 
target board.  It uses this to control the operation of the target.  The stub installs itself 
as the BIOS Idle_Task and therefore has complete control of the processor (it calls 
the Idle_Chain to keep all other tasks operational).  This stub loads in free memory at 
500H (approximate, different versions load in different places) and extends to 0xA00, 
so I chose 1000H for the origin of se1 since this is well above the debugger space.  
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 Leave this libremote window open and return to the Windows explorer. 
 
 Double-click the bash_env.bat icon again to create another bash window.  At 
the prompt enter “make.”  This will use the makefile script to build se1.  There should 
be no errors.  Then enter “cy16-elf-gdb se1” at the bash prompt.  This will open 
the Insight debugger (gui shell on top of gdb) in another window.  If this is the first 
time running Insight then you must set the target settings  (Target=Remote/TCP, 
Hostname=localhost, Port=2345);  these settings will be remembered.  Now click the 
run icon.  Insight will find libremote and establish a connection to our target system (if 
the libremote window is visible you will see the connection accepted) and will then 
download our example code to the EZ-Host mezzanine target board.  You can now 
single step through the source code, set breakpoints, view all data using the symbols 
that were created in the source code, view registers or memory, or whatever you 
desire to debug the program.  Insight, and its base gdb, are very capable debuggers. 
An online manual was installed when the tools were installed; I would recommend 
printing it out and studying it now (refer to Cypress/USB/OTG-Host/Docs/OTG-Host 
Tools/3_debug.pdf). 
 
 When we click “continue” with no breakpoints set, the program will run 
forever until we click the STOP icon.  Holding down the top or bottom buttons on the 
mezzanine board will result in “HELLO” being cycled through the seven-segment 
display.  Pressing any button will advance one letter at a time.  This is our first CY16 
program. 
 
 If you have a large screen then your development environment will look 
something like Figure 3-6 – an editor window (I use UltraEdit), an Insight main 
window with several support windows, and two bash windows.  The Windows 
environment makes it easy to switch between these different programs. 
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Figure 3-6.  Firmware development uses multiple windows 

 
 When you finish debugging, select exit from Insight's file menu.  This closes 
all of Insights windows.  You may need to enter a Control+C in the libremote window 
to regain control of the bash shell.  While in the libremote window hit the up-arrow 
key – this will retrieve the previously entered command (cy16-elf-libremote -u) and hit 
the enter key again.  This sets up libremote for the next debug session. 
  
 Similarly, in the other bash window, hitting the up-arrow key will retrieve 
“cy16-elf-gdb se1,” and hitting it again will retrieve “make”.  You can use this 
shortcut to rapidly move around the edit-build-debug loop.  For now however, type 
“exit” to close this bash window. 
 
 Note, if the up-arrow does not retrieve the previous command, enter “set – 
o vi” to enable the command history/editing features.  We will use about 2% of the 
capability of a bash shell while running the examples – an interested reader should 
review “Learning the Bash Shell” by Newham and Rosenblatt.  
  
 Our first simple example used almost no CY16 features so that we could 
focus on the TOOLS and the PROCESS.  I wanted to do a USB device example 
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next, but we have to go on a slight diversion (still very educational) due to the default 
operation of BIOS. 
  

Simple Example #2 – Using Scan Records 
 During initialization BIOS checks the state of two GPIO pins to discover 
which mode it should start in.  These two lines, GPIO30 and GPIO31, are also used 
for I2C communications so they will have a power-on state of high due to the pull-up 
resistors.  This selects stand-alone mode, which is what we want (note that all of the 
dipswitches should be OFF).  BIOS scans the I2C EEPROM, then initializes SIE2 for 
the debug tools, and then initializes SIE1 with the same default configuration. 
 
 We do not want BIOS to initialize SIE1 since our application program will do 
that with different parameters.  We therefore need to change the default operation of 
BIOS by adding scan records to the I2C EEPROM.  This is the subject of se2 (simple 
example #2).  The se2 directory contains all of the files we need, and the main 
program, eeprom.s, is repeated in Figure 3-7 for discussion. 
 

 
.section .init 
; First define the code that needs to be loaded 
; It will be prefixed with a Scan Header 
        .short  ScanSignature 
        .short  Length+2 
        .byte   LoadCommand 
        .short  _start 
.global _start 
_start: 
; Initialize SIE2 for the GDB debugger.  Use the Cypress default 
; configuration 
        mov r2, 2            ; Choose SIE2 
        mov r0, 0            ; Full speed 
        int SUSB_INIT_INT    ; Let the BIOS initialize SIE2 
; I now need to give control back to BIOS 
 mov r15, 0x400  ; Reset the stack 
        sti                  ; First time interrupts are enabled 
        int IDLER_INT        ; This will not return               
.equ    Length, .-_start 
; Now define a scan record that will transfer control to my program 
        .short  ScanSignature 
        .short  2 
        .byte   JumpCommand 
        .short  _start 
; Scan will not return so I need not have an EndOfScanRecords 
 

Figure 3-7.  Using scan records to modify BIOS operation 

 
Since we only need SIE2 initialized, we must take control from BIOS using 

the two scan records shown in Figure 3-7.  We first initialize SIE2 (most of the work is 
done by BIOS) for the debugger, and we must now own the idle chain or give control 
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back to BIOS so that it will own the idle chain.  I chose to restart the idle chain by 
resetting the stack pointer (R15) and calling BIOS using the IDLER_INT. 
 
 The makefile and linker script are included in the se2 directory for your 
review.  Double click bash_env.bat in the se2 directory to open a bash window.  
Enter “make” at the bash prompt to build eeprom.bin. 
 
 The qtui2c utility program is used to download eeprom.bin into the I2C 
EEPROM.  Recall that all of the dipswitches were initially OFF when we powered up 
the board.  This brings it up in a default condition, which is necessary when we are 
going to program an EEPROM.  Dipswitches 6, 5, 4, and 3 must now be set to ON to 
enable the I2C EEPROM. If you refer to the CY3663 Hardware User’s Manual that 
was installed with the kit CD-ROM, you will note that this switch configuration selects 
stand-alone mode with EEPROM 4 active.  EEPROM 4 is currently unused, and so it 
is available for storing our code. In a bash window, enter “qtui2c eeprom.bin f” 
to program the EEPROM.  With dipswitches 6, 5, 4, and 3 set the EZ-Host will read 
the scan records from the EEPROM at power on and implement them.  Our scan 
records will cause BIOS to skip SIE1 initialization.  Note how easy it was to 
change/augment the operation of BIOS using scan records.  We will later place 
example code into the EEPROM so that it too runs on power on. 
 

Simple Example #3 – Buttons and Lights Device 
 Now that we are familiar with the tools used to create an application program, 
and we know how to change/augment BIOS using scan records, we can tackle a 
USB device example. 
 
 Our first USB device will be a “Buttons and Lights” Human Interface Device 
(HID).  I chose to use a standard class driver rather than a custom device driver since 
there will be less new topics to learn. BIOS includes default handling of standard 
USB requests using default descriptors.  It also includes default handling of class 
requests (it stalls them all), so we will have a small amount of code to write to support 
the HID.  This example will forward mezzanine board button presses to the PC via a 
HID input report.  The seven-segment display will be controlled via HID output 
reports.  A PC-based application is provided to test its operation. 
 
 The structure of simple example #3 (se3) is shown in Figure 3-8.  The 
Init_Task must setup BIOS to use our descriptors and must configure Callback 
routines to implement HID-specific tasks that are not handled by BIOS.  There is no 
idle task in this example since button-presses are handled by Frameworks on our 
behalf. 
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Figure 3-8.  Structure of our first USB Device Example 

 
Since this is our first USB example I want to move slowly to ensure that 

every facet is understood.  We will discover that BIOS handles a lot of the USB 
specification requirements work for us, so our energies can be focused upon the 
application program. 
 
 Figure 3-9 shows the declaration of our USB device descriptors – this is a 
standard HID class declaration that specifies that HID input reports are supplied on 
endpoint 1 (EP1) and HID output reports are supplied on EP2.  The report descriptor 
defines each report as a single byte. 
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// Define the descriptors for our "Buttons and Lights" HID example 
USB_DEVICE_DESCRIPTOR const device_descriptor = { 
 18, 1, 0x200, 0, 0, 0, 64, 0x4242, 0xc003, 1, 1, 2, 0, 1 
}; 
  
uint8 const report_descriptor[] = { 
 6, 0, 0xFF, // Usage_Page (Vendor Defined) 
 9, 1,  // Usage (IO Device) 
 0xA1, 1, // Collection (Application) 
 0x19, 1, //   Usage_Minimum (1) 
 0x29, 8, //   Usage_Maximum (8) 
 0x15, 0, //   Logical_Minimum (0) 
 0x25, 1, //   Logical_Maximum (1) 
 0x75, 1, //   Report_Size (1) 
 0x95, 8, //   Report_Count (8) 
 0x81, 2, //   Input (Data,Var,Abs) = Buttons 
 0x19, 1, //   Usage_Minimum (1) 
 0x29, 8, //   Usage_Maximum (8) 
 0x91, 2, //   Output (Data,Var,Abs) = Lights 
 0xC0  // End_Collection 
}; 
 
USB_ALL_DESCRIPTORS const configuration_descriptor = { 
    {   /* config_descriptor header */ 
        9, 2, sizeof(USB_ALL_DESCRIPTORS), 1, 1, 0, 0xC0, 1 }, 
    {   /* interface */ 
        9, 4, 0, 0, 2, 3, 0, 0, 3 }, 
    { /* class_descriptor */ 
     9, 0x21, 0x100, 0, 1, 0x22, sizeof(report_descriptor) }, 
    {   /* EP1_In */ 
        7, 5, 0x81, 3, 8, 100 }, 
    {   /* EP2_Out */ 
        7, 5, 2, 3, 8, 100 } 
}; 
 

Figure 3-9.  Example 3 Descriptors 

 
The Init_Task, shown in Figure 3-10, adjusts the set of pointers that BIOS 

uses to describe a USB device.  We first change three data pointers so that BIOS will 
use our descriptors rather than its default descriptors.  We then change three function 
pointers so that we modify BIOS’s default operation.  The new functions and callback 
routines that handle the IO are shown in Figure 3-11. 
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// Declare the app_init_task 
void app_init(void) { 
// Update the descriptor pointers that BIOS uses 
    WRITE_REGISTER (SUSB1_DEV_DESC_VEC, (PFNINTHANDLER) &device_descriptor); 
    WRITE_REGISTER (SUSB1_CONFIG_DESC_VEC, (PFNINTHANDLER) &configuration_descriptor); 
    WRITE_REGISTER (SUSB1_STRING_DESC_VEC, (PFNINTHANDLER) &strings_descriptor); 
 
// Chain a routine before BIOS's standard request handler 
    BIOSStandardRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB1_STANDARD_INT*2); 
    WRITE_REGISTER (SUSB1_STANDARD_INT*2, (PFNINTHANDLER) &InterceptStandardRequest); 
  
// Add a Class Request Handler 
    BIOSClassRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB1_CLASS_INT*2); 
    WRITE_REGISTER ( SUSB1_CLASS_INT*2, (PFNINTHANDLER) &HandleClassRequest); 
 
// We need to know when a Set_Configuration is received 
    BIOSConfigurationChange = (PFNINTHANDLER) READ_REGISTER (SUSB1_DELTA_CONFIG_INT*2); 
    WRITE_REGISTER ( SUSB1_DELTA_CONFIG_INT*2, (PFNINTHANDLER) &SetConfigurationRequest); 
 
// Now initialize SIE1, this will result in it enumerating with the PC Host 
     susb_init( SIE1, USB_FULL_SPEED ); 
} 
 

Figure 3-10.  Operation of BIOS is changed by replacing pointers 

 
We first intercept a standard USB Request.  BIOS does not know about HID 

class so does not check for GetDescriptor (Interface).  We need to do this and, if we 
detect this command, then we must supply the HID Report Descriptor.  If we do not 
detect this command then we call the BIOS handler that implements all of the other 
standard USB commands for us. 
 

We use BIOS to send the report descriptor to the PC host.  We create an 
information block that describes our data (it’s address, length and a callback routine) 
and pass it to BIOS to send.  In our case, length is only 1 byte – we can put any 
value in length and BIOS handles the transmission of multiple, endpoint–sized blocks 
for us.  When all of the data has been sent, BIOS will use the CallBack routine to let 
us know.  In this case of supplying a report descriptor we don’t have anything special 
to do, so I specified a 0 which tells BIOS to handle the completion of the transfer on 
our behalf. 
  

The Handle Class Report CallBack implements the HID specific functions of 
our application.  There is not much to do in this simple example. 
 

We need to know when our device has been successfully configured, so we 
intercept the BIOS (SUSB1_DELTA_CONFIG) software interrupt.  In our routine we 
first allow BIOS to do its processing and then we can activate our data endpoints.  
Note that BIOS parsed our descriptors and did things like enable the correct 
hardware endpoints and other mundane “housekeeping” tasks. 
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We are interested in receiving reports from the PC host, so we setup a 
lights_report data structure to be ready to receive data.  We specify a 
lights_report_received CallBack and give this task to BIOS to manage.  When an 
output report arrives from the PC Host then BIOS will call our routine for us.  In our 
lights_report_received routine we update our seven segment display and then post 
another callback with BIOS. 
 

Frameworks will inform us, via the app_button_handler callback, when any 
button changes state.  This HID device forwards this information as an input report to 
the PC Host.  Our task is to format the data suitable for BIOS, and we can then use 
BIOS to send the report.  We fill out a data information block and pass its address to 
BIOS. 
 

Notice that our example code only deals with the high-level details of our 
“buttons and lights” application.  The low-level enumeration and sending and 
receiving of reports are handled by BIOS on our behalf.  If you are someone who 
likes to see ALL of the instructions that get executed then the source of BIOS is 
available from Cypress upon request (but, be warned, it is in very tightly packed 
CY16 assembler code).  The code implements the sequences and protocols as 
required by the USB specification.  It is not all that exciting.  You can change it if you 
really want to, using SCAN records, but I would not recommend that.  It is more 
productive for you to put energy into your USB application.  
 
 
void SetConfigurationRequest(void) { 
    USB_DEVICE_REQUEST  *req; 
    req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ; 
// Let BIOS handle this request first 
 BIOSConfigurationChange(); 
// If I got configured then I can enable my data endpoints 
    if ((req->wValue & 0xFF) == 

configuration_descriptor.config_header.bConfigurationValue) { 
      Configured = TRUE; cpld_set_led(SLAVE_LED); 
// Ask BIOS to inform me when a lights report is received 
  setup_lights_report_callback(); 
  } 
 else { 
  Configured = FALSE; cpld_clr_led(SLAVE_LED); 
  } 
 } 
 
 
void InterceptStandardRequest(void) { 
    USB_DEVICE_REQUEST  *req; 
    req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ; 
// BIOS does not handle GetDescriptor(Interface) so check for that 
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) && ((req->bmRequestType & 3) == 1) 

&& (req->wValue == 0x2200) ) { 
  report_descriptor_info.buffer = &report_descriptor; 
  report_descriptor_info.length = sizeof(report_descriptor); 
  report_descriptor_info.done_func = 0;  // Let BIOS handle completion  
   susb_send ( SIE1, 0, &report_descriptor_info); 
  }  
 else BIOSStandardRequestHandler();  // Pass the request on to BIOS to handle  
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 } 
void HandleClassRequest(void) { 
// Manage the HID Class Requests for the "Buttons and Lights" device 
    USB_DEVICE_REQUEST  *req; 
    req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ; 
    switch(req->bRequest) { 
  case USB_HID_SET_REPORT_REQUEST:  // Should not get this since I declared EP2_Out 
  case USB_HID_GET_REPORT_REQUEST: // Should not get this since I declared EP1_In 
  case USB_HID_SET_IDLE_REQUEST: // Optional command, not supported 
  case USB_HID_GET_IDLE_REQUEST: // Optional command, not supported 
  case USB_HID_GET_PROTOCOL_REQUEST: // Will not get this, we are not a boot device 
  case USB_HID_SET_PROTOCOL_REQUEST: // Will not get this, we are not a boot device 
  default: BIOSClassRequestHandler(); 
  } 
 } 
 
 
void buttons_report_sent(void) { 
 buttons_report_inuse = FALSE;   // Reuse the same information block 
 } 
 
 
void app_button_handler(BUTTON button) { 
// Report this change in button state to the host if we are configured 
 if (Configured && !buttons_report_inuse) { 
  buttons_report_info.buffer = &buttons_report; 
  buttons_report_info.length = sizeof(buttons_report); 
  buttons_report_info.done_func = buttons_report_sent; 
  buttons_report = button; 
  susb_send (SIE1, 1, &buttons_report_info); 
  buttons_report_inuse = TRUE; 
  } 
 } 
 
 
void lights_report_received(void) { 
// Update my display with the new lights value and wait for the next update  
 cpld_set_ssd( lights_report ); 
 setup_lights_report_callback(); 
 } 
 
 
void setup_lights_report_callback() { 
// Ask BIOS to alert us when the next report is received 
 lights_report_info.buffer = &lights_report; 
 lights_report_info.length = sizeof(lights_report); 
 lights_report_info.done_func = (PFNINTHANDLER) &lights_report_received; 
 susb_receive ( SIE1, 2, &lights_report_info); 
 } 
 

Figure 3-11.  The CallBack routines needed for Example 3 

Simple Example #4 – BAL Host Program 
 Just as we did in the first example, double click on bash_env in the se3 
directory to create a bash window.  Enter “make” to build the example then “cy16-
elf-gdb se3” to start the debugger.  Click the RUN icon and note that the 
debugger automatically inserted a breakpoint at Main (). 
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 Connect a second USB cable from the SIE1 peripheral 1A connector of the 
mezzanine board to a target PC as shown in Figure 3-12.  I show two PCs, a target 
PC and a development PC for clarity, but they could be the same PC running 
programs in different windows. 

CPU

Firmware Development PCTarget PC

CPUCPU

Firmware Development PCTarget PC

 
Figure 3-12.  Using two PCs to test Example 3 

 
Copy BAL.exe from the se4 directory onto your target PC and start this now.  

I wrote this PC host test program in Visual Basic since this was the easiest way to get 
the friendly display shown in Figure 3-13.  The source code is available in the se4 
directory.  The display buttons and the real buttons operate as an OR while the 
display seven–segment display and the real seven–segment display operate as an 
AND.  Pressing any button will increment both displays. 
 

On the development PC clear all breakpoints and click “continue.”  The 
example 3 program will run, and it will start enumerating on the target PC.  It is a 
standard HID so no special INF file or other operating system software is required.  
The “Buttons and lights” application will find the newly installed device, and the 
buttons and display will be operational.  This may take several seconds. 
 

Our first EZ-Host device example code is running. 
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Figure 3-13.  Display from Target PC “Buttons and Lights” program 

Simple Example #5 – Standalone BAL Device 
 To round out this chapter, I wanted to introduce you to another tool – 
scanwrap.   Scanwrap takes a binary file and creates a scan record from it.  This can 
be loaded into the I2C EEPROM directly.  I recommend programming the EZ-OTG 
board so that we can use it in subsequent examples.  Dipswitches 6, 5, 4, and 3 
should be the only ones ON to enable the EEPROM.  Double click on bash_env in 
the se3 directory to open a bash window.  Enter “scanwrap se3.bin scan_se3.bin 
0x1000” then program the EEPROM using “qtui2c scan_se3.bin f.”   Once the 
EEPROM is programmed, the mezzanine board becomes a standalone “Buttons and 
Lights” device – we shall call this simple example #5 (se5), and it will be used in other 
examples later in this book. 
 

Chapter Summary  
 We moved through four simple examples to get used to the EZ-Host/EZ-OTG 
tools and development environment.  We built a standard HID device, and used a PC 
Host application-program with standard Windows class-drivers to test it. 
 
 Building a USB device with the EZ-Host/EZ-OTG components is straight 
forward since BIOS handles all of the low-level USB details for us.  We can focus 
upon the application layer details.  In this example we only had a single device and 
used the other SIE connection for the debugger – later examples will support multiple 
independent devices on two independent USB segments. 
 
 In the next chapter, we will build a host application. 
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Chapter 4:  Developing a host application 

A USB host controller has more work to do than a USB device controller, a 
lot more. USB is a master-slave bus and the host, as master, will control all of the 
communications.  This will involve detecting and identifying connected devices, and 
then scheduling USB transfers as defined by the requirements of each device.  The 
structure of a host application program is the same as a device application program 
(refer to Figure 3-3) so we can focus on the functionality of our application program 
and allow Frameworks and BIOS to handle all of the low-level details of enumeration 
and scheduling.  Since the Frameworks code is pre-written and tested it will not take 
too much extra effort on our part to write a host applications program. 
 
 We shall work through a “Buttons and Lights” host example – essentially 
replacing the PC and the Visual Basic program that was demonstrated in the 
previous chapter.  We will use the other mezzanine board, and it will talk to the 
standalone Buttons and Lights HID device we built in example se3. 
 
 Most of this chapter describes the inner workings of the Frameworks host 
controller firmware in sufficient detail that you could modify or tune some parts of it 
for your particular application.  In general, this will NOT be required and many 
developers will just use Frameworks as is, so these readers may skim the first half of 
this chapter. 
 

Key Host Controller Concepts 
 Figure 4-1 shows a comparison between a re-programmable USB host 
controller, such as a PC, and an embedded host controller as would be implemented 
using the EZ-Host/EZ-OTG components.  The Frameworks code uses many of the 
same concepts as a Windows-based host implementation. 
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Figure 4-1.  A re-programmable host and an embedded host have similar structure 

 
 First focus on the USB device being added to the PC at the bottom left of 
Figure 4-1.  The PC will enumerate this device to discover which device driver it 
should use to manage it.  I am assuming the simplest case here where the USB 
device has a single interface.  Many devices have multiple interfaces and will 
therefore cause multiple device drivers to be loaded by the PC host.  We will consider 
this case later, so, for now, assume that only one device driver is loaded.  The 
operating system will call Start_Device() in the device driver, and a device object will 
be created.  This device object describes all of the attributes of the USB device in a 
format that is useful for the operating system. 
 
 In the PC environment the process stops here.  We have a USB device 
added and a device driver loaded to support this device.  The device driver typically 
doesn’t do anything unless requested by an application program, so lets start an 
applications program that will use this new USB device.  Windows has a 
comprehensive scheme involving GUIDs and Plug-And-Play system tables that allow 
a user program to rendezvous with the device driver and thus open it (i.e. use 
Createfile to return a file handle).  This scheme, although complex, is very flexible 
since it allows multiple user programs to share device drivers. 



 Chapter 4:  Developing a host application 

 49 

 
 Once the Windows application program has a handle to the device driver it 
can issue ReadFile, WriteFile, and IOControl commands.  The device driver will, in 
turn, create USB Request Blocks (URBs) that it passes to the USB host Controller 
driver. The windows host controller driver will accept URBs from many device drivers, 
and it creates a Transfer Descriptor List (TD_List) that defines the USB operations 
that must be executed to implement the URBs.  USB transfers are scheduled in 
frames that are 1 msec apart. The host controller software is preparing the next 
frame while the host controller hardware is implementing the current frame.  The host 
controller driver passes this TD_List to a host controller component that uses 
specialized hardware to process this list.   
 
 The host controller component processes the TD_List and updates status 
information indicating the success or failure of each transfer.  The host controller 
driver will use this information as it builds the TD_List for the next frame.   
 
 There are three standard USB host controller interfaces, UHCI (Universal 
Host Controller Interface), OHCI (Open HCI) and EHCI (Enhanced HCI).  UHCI and 
OHCI implement 12 Mb/s signaling while EHCI also includes 480 Mb/s signaling and 
the protocol enhancements, such as PING and SPLIT, that were added in the USB 
2.0 Specification.  All three interfaces are documented at www.usb.org. 
 
 Windows implements the ReadFile system call as a blocking call. This 
means that the application program must wait for the read to complete before 
continuing.  So it waits for the device driver to issue a URB, it waits while the TD_List 
is being built and sent, and it waits while the device is returning NAKs.  Eventually the 
device will send data and the corresponding TD will be marked complete. This 
propagates all of the way up the stack and the application program can continue.   
  
 The operation of an EZ-Host/EZ-OTG embedded host is similar.  
Frameworks will identify a newly attached device and will create a Device Object for 
it.  Frameworks will then try to match this device object with a list of device drivers 
that it owns – if a match is found then Frameworks will call Start_Device() in this 
driver.  In an embedded host the application program and device driver are not 
separate entities, they are combined into a single module which, for explanation 
purposes, I shall call Ap_driver.  The implication for us, since we want to write a host 
application program, is that we must follow a certain structure – this will be covered in 
detail in an example later in this chapter. 
 
 An embedded host can contain many Ap_driver modules and can thus 
support many different devices.  Since the code space on an embedded host is 
typically limited, the embedded host will declare a targeted peripheral list that 
describes the devices that it can support. Our first example supports a single device 
while later examples will support more. 
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 Once our ap_driver module starts running it will create URBs that it forwards 
to Frameworks for processing.  A Frameworks URB contains a callback routine that 
ap_driver specifies. Once the URB is completed, this routine is called. The ap_driver 
can do other processing in the meantime.  Frameworks builds a TD_List just like the 
PC host does – Frameworks uses the scheduling algorithms defined in the UHCI 
specification.  Frameworks passes the TD_List to BIOS for processing, and BIOS will 
later return the list with updated status.  BIOS uses specialized hardware in the EZ-
Host/EZ-OTG components to transfer the contents of the TD_List onto the USB 
wires.  Frameworks, meanwhile, creates a TD_List for the next frame. 
 

Frameworks Host Controller Implementation 
 Host applications developers can skip this section; this section goes into 
more detail on how the Frameworks host controller firmware is implemented. This 
section covers key Frameworks data structures and describes memory and buffer 
allocation. If you are reading through the many source files in the Common directory 
with the intentions of knowing the finer details, then you will find this section most 
useful. 
 
 The Frameworks host controller firmware has to manage a great deal of 
information. Data blocks are routinely created, passed through many levels of 
software and then destroyed.  Rather than continually copying data from one place to 
the next, Frameworks defines fixed format buffers that it allocates and de-allocates.  
The lifetime of a data buffer varies greatly, so a linked-list is used so that allocations 
and de-allocations need not occur in order. This linked-list implementation has the 
side benefit that all allocations and de-allocations take the same fixed time to execute 
– an important attribute in an embedded real-time system. Frameworks keeps data-
copying to an absolute minimum and manages data pointers extensively.  Figure 4-2 
shows the approximate size and number of fixed-format buffers, all of which are 
initialized as “free.”  Different application programs will use differing numbers of data 
buffers, so the count for each buffer type is defined in fwxcfg.h. 
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Figure 4-2.  Variable Data uses pre-allocated, fixed-format buffers. 

 
 Following a power-on, Frameworks will look for devices attached to its root 
hubs.  In our example we will continue to use SIE2 as a debugger connection, so we 
will only consider a single host example using SIE1 (dual host is covered in a later 
chapter).  If a device is found then Frameworks will create a device object, shown in 
Figure 4-3, and will start to fill in information about the device. 
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typedef struct USB_DEVICE { 
    uint8                   sie; 
    uint8                   port; 
    uint8                   address; 
    bool                    direct_connect; 
    uint8                   speed; 
    uint8                   configuration; 
    uint8                   num_endpoints; 
    uint8                   endpoint_max_pkt[8]; 
    uint8                   enum_state; 
    uint8                   enum_retry; 
    uint8                   otg_attributes;   /* bitmap. */ 
    struct CLASS_DRIVER     *driver; 
    USB_DEVICE_DESCRIPTOR   dev_descr; 
    USB_CONFIG_DESCRIPTOR   cfg_descr; 
    USB_INTERFACE_DESCRIPTOR inf_descr; 
    uint16                  enum_data;       
    uint8                   new_address; /* temporary. */ 
} USB_DEVICE; 
 

Figure 4-3.  Format of a Frameworks Device Object 

 
 Frameworks will use USB Request Blocks (URB) to get information from the 
new device.  The format of this key data structure is shown in Figure 4-4.  Our 
applications code will use the same mechanism to request services from 
Frameworks. 
 

 
typedef struct URB { 
    struct  USB_DEVICE *dev;  /* pointer to associated USB device */ 
    uint8   dir;              /* in or out end point */ 
    uint8   usb_dev_addr;     /* device_address */ 
    uint8   endpoint;         /* end point number */ 
    uint8   speed;            /* 0 = full or 1 = low speed */ 
    uint8   type;             /* end point type. iso, intr, control, bulk */ 
    void   *transfer_buffer;  /* associated data buffer */ 
    int16   buffer_length;    /* data buffer length */ 
    int16   actual_length;    /* actual buffer length */ 
    int16   bandwidth;        /* allocated bandwidth */ 
    uint8  *setup_packet;     /* setup packet (control only) */ 
    int16   num_of_packets;   /* number of packets in this request (iso only) */ 
    int16   interval;         /* polling interval (irq only) */ 
    int16   error_count;      /* number of errors in this transfer */ 
    uint16  status;           /* returned status */ 
    PFNURBCALLBACK callback;  /* callback for URB completion */ 
    struct URB  *next;        /* To facilitate easy linking of URBs. */ 
} URB; 
 

Figure 4-4.  Format of a Frameworks USB Request Block (URB) 

 
 Frameworks will create one, or more, Transfer Descriptors (TD) from this 
URB.  The format of a TD exactly matches the format used by the EZ-Host/EZ-OTG 
hardware and contains several bit fields as shown in Figure 4-5. 
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typedef struct TD { 
    uint16      base_address;       /* Base Address of Data Buffer */ 
    uint16      length       : 14;  /* Port Number /Data Length */ 
    uint16      port_num     :  2; 
    uint16      ep           :  4; 
    uint16      pid          :  4; 
    uint16      dev_address  :  8; 
    uint8       control; 
    uint8       status; 
    uint16      retry_cnt       : 2; /* Retry Count */ 
    uint16      retry_xfer_type : 2; 
    uint16      retry_active    : 1; 
    uint16      unused_3        : 3; 
    uint16      residue         : 8; /* Residue */ 
    struct TD   *next_TD;            /* Points to Next TD Address */ 
    URB         *urb;                /* Pointer to URB origin */ 
    uint16      ctrl_next_state;     /* control pipe state */  
    uint16      interval_reference;  /* frame count when TD was last scheduled */ 
    uint16      nak_retry_count;     /* Limit times a TD is retried after NAK. */ 
} TD; 
 

Figure 4-5.  Format of EZ-Host/EZ-OTG Transfer Descriptor 

 
 Frameworks will place (a) token(s) for this/these TD(s) onto one of the lists 
marked NEW in Figure 4-6; it will choose the list that matches the USB packet type.  
We are now at the heart of the Frameworks host controller firmware. Figure 4-6 
shows the multiple input Transfer Descriptor lists (TD_lists) and the single output TD 
list that Frameworks uses to schedule transfers on the USB wires.  Multiple lists are 
required to manage the scheduling algorithm defined by the UHCI specification – 
isochronous transfers have the highest priority followed by ready interrupt transfers, 
and these are allowed up to 90% of the bus bandwidth.  If there is time available in 
the frame then control and bulk transfers will be included. 
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Figure 4-6.  Scheduling Transfers in a frame 

 
 Let us assume that the EZ-Host/EZ-OTG has just completed a series of data 
transfers on USB and that BIOS has updated the status information in the TD_List; I 
call this the Status_List in Figure 4-6. Frameworks first parses the Status_List looking 
for successful transfers (it executes the matching callback) or for failed transfers (it 
places the TD on to the matching Retry_List).  It then builds the NextFrame TD_List 
by adding active items from the New or Retry lists.  It processes the lists in the order 
shown (from top to bottom) and stops either when it has calculated that the frame will 
be full, or it reaches the end of the input lists.  Frameworks then gives this TD_List to 
BIOS so that it will use specialized hardware within the EZ-Host/EZ-OTG 
components to move these onto the USB wires. BIOS collects status from these 
transfers and we repeat this sequence (i.e. re-read this paragraph) until the host is 
powered down. 
 
 So lets elevate from these low-level scheduling details a moment.  How did 
we get here?  Yes, an initialization task within Frameworks detected a device present 
on its root hub and sent URBs to discover the identity of the device.  Sending URBs 
took us to TDs, which took us to scheduling and into the heart of the Frameworks 
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host controller firmware.  Notice in the URB structure (shown in Figure 4-4) that the 
caller specifies a callback routine that is used once the request is completed.  The 
application programmer does not need to know any of these low-level details since 
the callback function will eventually be called. 
 

Device Identification 
 Frameworks will use a series of URBs to enumerate the device.  It will 
typically use GetDescriptor(Device), GetDescriptor(ConfigurationHeader), 
GetDescriptor(Configuration) and will use this gathered information to select a device 
driver, or in our case, an Ap_driver.  All embedded hosts will support a targeted 
peripherals list, and Frameworks implements this list as an array of registered 
drivers.  Each registered driver is defined by a CLASS_DRIVER structure, shown in 
Figure 4-7, and this contains pointers to our Ap_driver code which is shown in Figure 
4-8. 
 

 
typedef struct CLASS_DRIVER { 
    uint8   class; 
    uint8   subclass; 
    uint8   if_class;                /* Interface class. */ 
    uint8   if_subclass;             /* Interface subclass. */ 
    uint8   protocol; 
    uint16  vendor_ID; 
    uint16  product_ID; 
    uint16 (*start)(USB_DEVICE *dev);  /* Callback for Start_Device */ 
    uint16 (*stop)(USB_DEVICE *dev);   /* Callback for Stop_Device */ 
    void (*run)(USB_DEVICE *dev);      /* Callback for idle time processing */ 
    uint16 (*ioctl)(USB_DEVICE *, uint16, uint16, uint16 ); 
    uint16  id;                      /* System wide unique device ID. */ 
} CLASS_DRIVER; 
 

Figure 4-7.  Ap_driver is described by a Class_Driver structure 

 
 Note that the structure of Ap_driver is the familiar three-task model: an 
Init_Task (that sets up the Idle_Task and the CallBacks), an Idle_Task (that looks for 
work to do), and a collection of CallBack routines that do the work. 
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Figure 4-8.  Structure of Ap_driver code 

 
 The first time our application program knows about the device that it needs to 
manage is when it receives a call from Frameworks to our Init_Task – the low-level 
enumeration and driver matching has already been done by Frameworks so we can 
start our application straight away. 
 

Simple Example #6 – Buttons and Lights Host 
 The host-side application for our “Buttons and Lights” example is 
straightforward.  We have to create a task that polls the “Buttons and Lights” USB 
device for input reports, and we have to create a task to monitor local button presses.  
A single interrupt URB with a callback will wait for, and alert us to, input reports, and 
we’ll use the same button callback routine that we used in the device example.   
Updating the seven-segment displays is also easy – the local one is a call into the 
Frameworks IO subsystem and the remote update is a single URB posted to 
Frameworks.  The code for the se6 application is shown in Figure 4-9.  As you can 
see, most of the code deals with initialization. 
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/* File: app.c for Simple Example 6  
 * This is a HOST running a BAL program 
 */ 
#include "fwx.h" 
#include "board.h" 
#include "app.h" 
/* Application data. */ 
// Provide 1 byte lights report on a button change, receive a 1 byte buttons report 
uint8 buttons_report ATTR_USB_XFER_BUF_SECTION; 
uint8 lights_report  ATTR_USB_XFER_BUF_SECTION; 
int DisplayValue; 
 
// My driver will need two URBs - I allocate them in Start_Driver and re-use them 
URB *buttons_urb, *lights_urb; 
bool lightsUrbInUse = FALSE; 
 
// Describe my driver is a Frameworks compatible format.  Only one may be active 
bool DriverInUse = FALSE; 
CLASS_DRIVER const se6_driver = { 
 0,  // class 
 0,  // subclass 
 3,  // if_class 
 0,  // if_subclass 
 0,  // protocol 
 0x4242,  // vendor_ID 
 0xc003,  // product_ID 
 se6driver_start, // (*start)( USB_DEVICE *dev ) 
 se6driver_stop, // (*stop)(void) 
 se6driver_run, // (*run)(void) 
 se6driver_ioctl, // (*ioctl)( USB_DEVICE *, uint16, uint16, uint16 ) 
}; 
 
uint16 show_error(uint16 error) { 
// Helper routine to display errors, should not get any! 
 cpld_set_led(ERROR_LED); 
 cpld_set_ssd(error); 
 return ERROR; 
 } 
  
// Declare my Init_Task - this is Driver_Start 
uint16 se6driver_start(USB_DEVICE *dev) { 
// Frameworks will pass me a driver object for the BAL HID device 
// Only allow one copy of the driver to run 
    if (DriverInUse) return ERROR; 
    DriverInUse = TRUE; 
// Get two URBs needed for the interrupt reports 
 buttons_urb = alloc_URB(FALSE, sizeof(buttons_report) ); 
 if (!buttons_urb) return show_error(0xA); 
 lights_urb = alloc_URB(FALSE, sizeof(lights_report) ); 
 if (!lights_urb) return show_error(0xB); 
// I have two URBs, initialize them 
// NOTE: since I know the device then I know attributes such as endpoint/polling interval 
// In the general case I would parse the descriptors to discover this information 
// Initialize those elements of the urb that are constant 
    lights_urb->dev = dev; 
    lights_urb->dir = TD_CTRL_DIR_OUT; 
    lights_urb->usb_dev_addr = dev->address; 
    lights_urb->endpoint = 2;    // See NOTE 
    lights_urb->speed = dev->speed; 
//  lights_urb->type = USB_INTERRUPT_TRANSFER_TYPE;  
    lights_urb->type = USB_BULK_TRANSFER_TYPE;  
    lights_urb->interval = 100;    // See NOTE 
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// Initialize those elements of the urb that are constant 
    buttons_urb->dev = dev; 
    buttons_urb->dir = TD_CTRL_DIR_IN; 
    buttons_urb->usb_dev_addr = dev->address; 
    buttons_urb->endpoint = 1;    // See NOTE 
    buttons_urb->speed = dev->speed; 
    buttons_urb->type = USB_INTERRUPT_TRANSFER_TYPE; 
    buttons_urb->interval = 100;    // See NOTE 
    buttons_urb->transfer_buffer = &buttons_report; 
    buttons_urb->buffer_length = sizeof(buttons_report); 
    buttons_urb->callback = (PFNURBCALLBACK) buttons_report_received; 
// Post the buttons_urb to wait for an input report from the device 
 if (td_submit_URB(buttons_urb) == ERROR) { 
  release_URB(buttons_urb); 
  return show_error(0xC); 
  } 
 else return SUCCESS; 
 }  
 
 
// Declare Idle_Task - no work to do, all handled via callbacks 
 
 
// Declare Callback routines - the three required driver routines first 
uint16 se6driver_stop(USB_DEVICE *dev) { 
 if (!DriverInUse) return ERROR; 
 DriverInUse = FALSE; 
// Release any system resources we have 
 if (buttons_urb) { 
  td_clear_URB(buttons_urb); // Remove from td processor 
  release_URB(buttons_urb);  // Deallocate the urb 
  } 
 if (lights_urb) { 
  if (lightsUrbInUse) td_clear_URB(lights_urb); 
  release_URB(lights_urb); 
  } 
 return SUCCESS; 
 } 
 
void se6driver_run(USB_DEVICE *dev) { 
// Nothing to do in this IdleTask 
 } 
 
uint16 se6driver_ioctl(USB_DEVICE *dev, uint16 cmd, uint16 d1, uint16 d2) { 
// Nothing to do since no IOCTLs defined 
 if (DriverInUse) return SUCCESS; 
 return ERROR; 
 } 
 
// Handle local button presses 
void app_button_handler(BUTTONbutton) { 
 switch (button) { 
  case BTN_UP: if (++DisplayValue > 9) DisplayValue = 0; break; 
  case BTN_DOWN: if (--DisplayValue < 0) DisplayValue = 9; break; 
  case BTN_LEFT: DisplayValue = 0; break; 
  case BTN_RIGHT: DisplayValue = 9; break; 
  default: break; 
  } 
 cpld_set_ssd(DisplayValue); 
// Need to keep the Device display in sync 
 lights_report = DisplayValue & 0x0F; 
 if (!lightsUrbInUse) { 
     lights_urb->transfer_buffer = &lights_report; 
     lights_urb->buffer_length = sizeof(lights_report); 
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     lights_urb->callback = (PFNURBCALLBACK) lights_report_sent; 
  if (td_submit_URB(lights_urb) == ERROR) { 
   release_URB(lights_urb); 
   show_error(0xD); 
   }  
  else lightsUrbInUse = TRUE; 
  } 
 } 
 
// Handle remote button presses 
void buttons_report_received(URB *urb) { 
 if (urb->status == SUCCESS) { 
// Device has just sent me a button press, treat it as a local button press 
  app_button_handler(buttons_report); 
// Frameworks will continue to monitor INT-IN, I don't need to resubmit the urb 
  } 
 else { 
// There was an error on the urb, so Frameworks will stop scheduling it 
// I should try and resubmit it to keep looking for INT-IN   
     urb->transfer_buffer = &buttons_report; 
     urb->buffer_length = sizeof(buttons_report); 
     urb->callback = (PFNURBCALLBACK) buttons_report_received; 
  if (td_submit_URB(urb) == ERROR) { 
   release_URB(urb); 
   show_error(0xC); 
   } 
  } 
 } 
 
// Remote lights update report has been sent 
void lights_report_sent(void) { 
// Now OK to reuse lights urb 
    lightsUrbInUse = FALSE; 
 }  
 

Figure 4-9.  Host application code for simple example #6 

 
 There are other files in the se6 directory.  The fwxcfg.h file selects a lot more 
features from the Frameworks subsystem.  You can open a bash window and enter 
“make” to build an executable file.  Just as before, open another bash window for 
“cy16-elf-libremote -u” and enter “cy16-elf-gdb se6” in the first bash 
window to start the debugger.  You should have your hardware set up as shown on 
Figure 4-10.  We are debugging se6 on the EZ-Host mezzanine board; we are using 
a PC to control the EZ-Host board via a USB cable connected to SIE2; the EZ-OTG 
mezzanine board with se5 installed in EEPROM will operate as a USB BAL device. 
 
 Clear the debugger breakpoints and click “continue.”  Now press the buttons 
on the host mezzanine card or the device mezzanine card and watch the seven-
segment displays on each of them change. 
 
 Our first host application program. 
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Figure 4-10.  Testing the se6 host example 

 

Chapter Summary  
 The structure of a host application program is the same as the structure of a 
device application program.  The application program focuses on the design logic 
that we want to implement, and all of the low-level USB interaction, including device 
identification and transaction scheduling, is handled by Frameworks.  We looked 
inside the operation of the Frameworks host controller firmware and saw how it 
schedules transfers using pre-allocated, fixed-format buffers and the UHCI algorithm. 
 
 In the next chapter we will combine the host and device application programs 
into one program to build a “two-headed” application that supports host and device 
functionality concurrently.  You will be impressed with what this subsystem can do. 
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Chapter 5:  Concurrent operation as a host and device 

 As it happens, the concurrent operation of the EZ-Host/EZ-OTG as a host 
and as a device is simpler to explain than the role-changing operation of a dual-role 
device, so I decided to cover this topic first.  In reality we have already used this 
mode of operation of the EZ-Host/EZ-OTG since the debugger connection that we 
have been using is a USB device!  But this debug channel has been handled solely 
by low-level BIOS routines and has therefore not been visible to our applications 
programs.  In this chapter our example program will use both SIEs and we will need 
to find another method to attach our debugger (several are available). 
 
 Figure 5-1 shows the general arrangement of an EZ-Host/EZ-OTG 
application as a host and as a device.  Note that, from this overview, it resembles a 
hub. 
 

EZ-Host/EZ-OTG

USB
Device

USB
Host

PC Host

IO Device

Upstream

Downstream

EZ-Host/EZ-OTG

USB
Device

USB
Host

PC Host

IO Device
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Figure 5-1.  Concurrent operation as a host and as a device 

 
 The host+device and a hub are similar in that they both have an upstream 
port facing a PC and a downstream port facing a device.  Their operation is quite 
different however, but we will take advantage of this similarity in a later example.  
 
 I am reusing my Buttons and Lights example for this chapter.  It has the 
advantage of being a simple application so that you can focus on the methods and 
process.  You should already be familiar with its operation, so you will be able to 
focus on the new elements of the examples.  It is also readily extensible to other 
class examples so it is a good learning vehicle.  The example we shall build in this 
chapter is shown in the center of Figure 5-2. 
 



USB Multi-Role Device Design By Example 

62 

CPU

CPU

PC Host running Visual Basic BAL, se4

EZ-OTG mezzanine board
running BAL device from se5

EZ-Host mezzanine board
running BAL device from se3

and BAL host from se6

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INC

DEC

CPUCPU

CPUCPU

PC Host running Visual Basic BAL, se4

EZ-OTG mezzanine board
running BAL device from se5

EZ-Host mezzanine board
running BAL device from se3

and BAL host from se6

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INC

DEC

USB Design By Example: Buttons and Lights

Remote IO Device found

Exit

INCINC

DECDEC

 
Figure 5-2.  Buttons and Lights example with two hosts and two devices 

 
 We will use a PC running the Visual Basic Buttons and Lights program from 
Chapter 3.  We will also use an EZ-OTG mezzanine board running as a Buttons and 
Lights device from Chapter 3 (= se5).  Our target will be the EZ-Host mezzanine 
board running both the BAL host and the BAL device applications programs.  We 
have most of the code for our host+device example, so we “just” have to integrate it 
into a single application program. 
 
 Our first design decision comes when we look at the target for our example.  
The mezzanine board only has one set of buttons and one seven segment display.  
Should I share the hardware amongst the two programs or should I add more 
hardware?  This is a trivial example of a more complex issue – should the host 
application program and the device application program be independent of each 
other or should they cooperate to solve the current design challenge?  We are in total 
control here – we can simply pass packets on the upstream segment to the 
downstream segment (similar to a hub) or we could process the data in both 
directions and selectively forward packets in either direction (an intelligent hub?). 
 
 In this first example I decided to share the host+device lights but not the 
buttons.  The seven-segment display will be updated from the PC host OR from the 
BAL device.  A button press will be passed to the PC host but not to the BAL device.  
This design decision will result in the three sets of buttons (PC host, host+device and 
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device) each having a different effect.  In the next example I shall change the 
algorithm such that all three displays stay in sync. 
 

Simple Example #7 – Concurrent BAL Host and Device 
 We wrote the code for the Buttons and Lights host program in Chapter 4 – 
we will reuse it.  We also wrote the code the for Buttons and Lights device program in 
Chapter 3 – we need to change this so that it uses SIE2 rather than SIE1 (since this 
is being used by the host program).  The combined structure of Init_Task, Idle_Task 
and CallBack_Tasks is shown in Figure 5-3.  I also edited fwxcfg.h in the se7 
directory to include host and device features from Frameworks. 
 
 
/* File: app.c.   Simple Example 7  
 * BAL host+device,  host on SIE1, device on SIE2 
 */ 
 
#include "app.h" 
#include "sie1.h" 
 
/* Application data. */ 
// Declare the Host data first 
// Provide a 1 byte lights report on a button change, receive a 1 byte buttons report 
uint8 host_buttons_report ATTR_USB_XFER_BUF_SECTION; 
uint8 host_lights_report  ATTR_USB_XFER_BUF_SECTION; 
int DisplayValue = 0; 
 
// Support both host ports on SIE1 
// Port changes are detected in an ISR and serviced in the IdleTask 
// In this example se5 is directly connected to se6 
// It can be attached on either host port (try it!) 
static bool port_change[2] = {FALSE, FALSE}; 
static bool direct_connect_present[2] = {FALSE, FALSE}; 
 
// My driver will need two URBs - I allocate them in Start_Driver and re-use them 
URB *buttons_urb, *lights_urb; 
bool lightsUrbInUse = FALSE; 
 
// Describe my driver is a Frameworks compatible format.  Only one may be active 
bool DriverInUse = FALSE; 
CLASS_DRIVER const se7_driver = { 
 0,   // class 
 0,   // subclass 
 3,   // if_class 
 0,   // if_subclass 
 0,   // protocol 
 0x4242,  // vendor_ID 
 0xc003,  // product_ID 
 se7driver_start, // (*start)( USB_DEVICE *dev ) 
 se7driver_stop, // (*stop)(void) 
 se7driver_run, // (*run)(void) 
 se7driver_ioctl, // (*ioctl)( USB_DEVICE *, uint16, uint16, uint16 ) 
}; 
 
// Define how the Host and Device share buttons 
bool share_local_buttons = FALSE;   // Keep buttons private 
bool passthru_downstream_buttons = FALSE;  // Keep buttons private 
 
// Now declare the device data, see se3 for more details 
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bool Configured = FALSE; 
extern uint8 strings_descriptor; 
uint8 device_buttons_report ATTR_USB_XFER_BUF_SECTION; 
uint8 device_lights_report  ATTR_USB_XFER_BUF_SECTION; 
USBTXRXINFO report_descriptor_info, buttons_report_info, lights_report_info; 
bool buttons_report_inuse = FALSE;  // I recycle the same buffers 
PFNINTHANDLER BIOSConfigurationChange, BIOSStandardRequestHandler, 
BIOSClassRequestHandler; 
 
USB_DEVICE_DESCRIPTOR const device_descriptor ATTR_SIE1_DESCR_SECTION = { 
 18, 1, 0x200, 0, 0, 0, 64, 0x4242, 0xc003, 0x100, 1, 2, 0, 1 
 }; 
  
uint8 const report_descriptor[] ATTR_SIE1_DESCR_SECTION = { 
 6, 0, 0xFF, // Usage_Page (Vendor Defined) 
 9, 1,  // Usage (IO Device) 
 0xA1, 1,  // Collection (Application) 
 0x19, 1,  //   Usage_Minimum (1) 
 0x29, 8,  //   Usage_Maximum (8) 
 0x15, 0,  //   Logical_Minimum (0) 
 0x25, 1,  //   Logical_Maximum (1) 
 0x75, 1,  //   Report_Size (1) 
 0x95, 8,  //   Report_Count (8) 
 0x81, 2,  //   Input (Data,Var,Abs) = Buttons 
 0x19, 1,  //   Usage_Minimum (1) 
 0x29, 8,  //   Usage_Maximum (8) 
 0x91, 2,  //   Output (Data,Var,Abs) = Lights 
 0xC0   // End_Collection 
 }; 
 
USB_ALL_DESCRIPTORS const configuration_descriptor ATTR_SIE1_DESCR_SECTION = { 
    {   /* config_descriptor header */ 
        9, 2, sizeof(USB_ALL_DESCRIPTORS), 1, 1, 0, 0xC0, 1 }, 
    {   /* interface */ 
        9, 4, 0, 0, 2, 3, 0, 0, 3 }, 
    { /* class_descriptor */ 
     9, 0x21, 0x100, 0, 1, 0x22, sizeof(report_descriptor) }, 
    {   /* EP1_In */ 
        7, 5, 0x81, 3, 8, 100 }, 
    {   /* EP2_Out */ 
        7, 5, 2, 3, 8, 100 } 
 }; 
 
uint16 show_error(uint16 error) { 
// Helper routine to display errors, should not get any! 
 cpld_set_led(ERROR_LED); 
 cpld_set_ssd(error); 
 return ERROR; 
 } 
 
 
// Declare my Init_Tasks - there are several in this example 
// sie1_init getc called early and I initialize sie1 as a host 
// sie2_init gets called early - I wait and initialize sie2 in App_Init 
// se7driver_start is called to initialize Host side once BAL device has been enumerated 
// App_Init is called to initialize the Device side of this example 
 
void sie1_init(void) { 
// Initialise the Status LEDs 
 cpld_set_led(HOST_LED); 
 cpld_set_led(SESSION_ACTIVE_LED); 
 cpld_clr_led(SLAVE_LED); 
 cpld_clr_led(ERROR_LED); 
// Now spin up the SIE as a Host 
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 device_map_init(); 
 WRITE_REGISTER(HUSB_pEOT_ADR, 1200); 
    husb1_init(); 
    INPLACE_OR(HOST1_IRQ_EN_REG, (VBUS_IRQ_EN | A_CHG_IRQ_EN | B_CHG_IRQ_EN) ); 
 } 
 
void sie2_init(void) { 
// Frameworks gives me an opportunity to initialize the sie here, I wait until app_init() 
 } 
 
uint16 se7driver_start(USB_DEVICE *dev) { 
// Frameworks will pass me a driver object for the BAL HID device 
// Only allow one copy of the driver to run 
    if (DriverInUse) return ERROR; 
    DriverInUse = TRUE; 
// Get two URBs needed for the interrupt reports 
 buttons_urb = alloc_URB(FALSE, sizeof(host_buttons_report) ); 
 if (!buttons_urb) return show_error(0xA); 
 lights_urb = alloc_URB(FALSE, sizeof(host_lights_report) ); 
 if (!lights_urb) return show_error(0xB); 
// I have two URBs, initialize them 
// NOTE: since I know the device then I know attributes such as endpoint/polling interval 
// In the general case I would parse the descriptors to discover this information 
// Initialize those elements of the urb that are constant 
 lights_urb->dev = dev; 
    lights_urb->dir = TD_CTRL_DIR_OUT; 
    lights_urb->usb_dev_addr = dev->address; 
    lights_urb->endpoint = 2;    // See NOTE 
    lights_urb->speed = dev->speed; 
//  lights_urb->type = USB_INTERRUPT_TRANSFER_TYPE;  
    lights_urb->type = USB_BULK_TRANSFER_TYPE;  
    lights_urb->interval = 100;    // See NOTE 
// Initialize those elements of the urb that are constant 
    buttons_urb->dev = dev; 
    buttons_urb->dir = TD_CTRL_DIR_IN; 
    buttons_urb->usb_dev_addr = dev->address; 
    buttons_urb->endpoint = 1;    // See NOTE 
    buttons_urb->speed = dev->speed; 
    buttons_urb->type = USB_INTERRUPT_TRANSFER_TYPE; 
    buttons_urb->interval = 100;    // See NOTE 
    buttons_urb->transfer_buffer = &host_buttons_report; 
    buttons_urb->buffer_length = sizeof(host_buttons_report); 
    buttons_urb->callback = (PFNURBCALLBACK) buttons_report_received; 
// Post the buttons_urb to wait for an input report from the device 
 if (td_submit_URB(buttons_urb) == ERROR) { 
  release_URB(buttons_urb); 
  return show_error(0xC); 
  } 
 else return SUCCESS; 
 }  
 
void app_init(void) { 
// This is se3 but using SIE2 
// Update the descriptor pointers that BIOS uses 
 WRITE_REGISTER (SUSB2_DEV_DESC_VEC, (PFNINTHANDLER) &device_descriptor); 
 WRITE_REGISTER (SUSB2_CONFIG_DESC_VEC, (PFNINTHANDLER) &configuration_descriptor); 
 WRITE_REGISTER (SUSB2_STRING_DESC_VEC, (PFNINTHANDLER) &strings_descriptor); 
// Chain a routine before BIOS's standard request handler 
 BIOSStandardRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB2_STANDARD_INT*2); 
 WRITE_REGISTER (SUSB2_STANDARD_INT*2, (PFNINTHANDLER) &InterceptStandardRequest); 
// Add a Class Request Handler 
// Actually, since I stall all requests anyway, I may as well let BIOS do that! 
// BIOSClassRequestHandler = (PFNINTHANDLER) READ_REGISTER (SUSB2_CLASS_INT*2); 
// WRITE_REGISTER (SUSB2_CLASS_INT*2, (PFNINTHANDLER) &HandleClassRequest); 
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// We need to know when a Set_Configuration is received 
 BIOSConfigurationChange = (PFNINTHANDLER) READ_REGISTER (SUSB2_DELTA_CONFIG_INT*2); 
 WRITE_REGISTER (SUSB2_DELTA_CONFIG_INT*2, (PFNINTHANDLER) &SetConfigurationRequest); 
// Now initialize SIE2, this will result in it enumerating with the PC Host 
    susb_init(SIE2, USB_FULL_SPEED); 
 } 
 
/* Declare the Idle_Tasks */ 
// There are several, but the only one that does work is sie1_idle 
// During Idle we look for device connect/disconnects on the host ports 
void sie1_idle(void) { 
 if (port_change[0] || port_change[1]) sie1_check_for_connected_devices(); 
 } 
void sie2_idle(void) { 
 } 
void se7driver_run(USB_DEVICE *dev) { 
 } 
 
/* Declare Callback routines */ 
void sie1_check_for_connected_devices(void) { 
 int16 port, reg; 
// Disable the insert/remove interrupts 
    INPLACE_AND(DEV1_IRQ_EN_REG, ~(A_CHG_IRQ_EN) ); 
// Check for connected devices. */ 
 for (port = 0; port < 2; ++port) { 
  reg = husb_reset(20, port); 
  if (!reg & 2) enumerate_device(SIE1, port, &direct_connect_present[port], 
sie1_enumeration_notify); 
  port_change[port] = FALSE; 
  } 
// Prior to re-enabling the interrupts, make sure the insert/remove interrupt is cleared.
 INPLACE_OR( HOST1_STAT_REG, A_CHG_IRQ_EN ); 
// Enable the insert/remove interrupts. */ 
    INPLACE_OR( DEV1_IRQ_EN_REG, A_CHG_IRQ_EN );  
 } 
 
void sie2_check_for_connected_devices(void) { 
 }  // Null since SIE2 is a device 
 
uint16 se7driver_stop(USB_DEVICE *dev) { 
 if (!DriverInUse) return ERROR; 
 DriverInUse = FALSE; 
// Release any system resources we have 
 if (buttons_urb) { 
  td_clear_URB(buttons_urb); // Remove from td processor 
  release_URB(buttons_urb);  // Deallocate the urb 
  } 
 if (lights_urb) { 
  if (lightsUrbInUse) td_clear_URB(lights_urb); 
  release_URB(lights_urb); 
  } 
 return SUCCESS; 
 } 
 
uint16 se7driver_ioctl(USB_DEVICE *dev, uint16 cmd, uint16 d1, uint16 d2) { 
// Nothing to do since no IOCTLs defined 
 if (DriverInUse) return SUCCESS; 
 return ERROR; 
 } 
 
// Handle button presses from device 
void buttons_report_received(URB *urb) { 
 if (urb->status == SUCCESS) { 
// Do I process the button locally or just pass it on? 
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  if (passthru_downstream_buttons) app_button_handler(host_buttons_report); 
  else button_press(host_buttons_report); 
  } 
 else { 
// There was an error on the urb, so Frameworks will stop scheduling it 
// I should try and resubmit it to keep looking for INT-IN   
     urb->transfer_buffer = &host_buttons_report; 
     urb->buffer_length = sizeof(host_buttons_report); 
     urb->callback = (PFNURBCALLBACK) buttons_report_received; 
  if (td_submit_URB(urb) == ERROR) { 
   release_URB(urb); 
   show_error(0xC); 
   } 
  } 
 } 
 
// Device lights update report has been sent 
void lights_report_sent (void) { 
// Now OK to reuse lights urb 
    lightsUrbInUse = FALSE; 
 }  
 
void button_press( BUTTON button) { 
// Process the button press locally and update the display 
 switch (button) { 
  case BTN_UP: if (++DisplayValue > 9) DisplayValue = 0; break; 
  case BTN_DOWN: if (--DisplayValue < 0) DisplayValue = 9; break; 
  case BTN_LEFT: DisplayValue = 0; break; 
  case BTN_RIGHT: DisplayValue = 9; break; 
  default: break; 
  } 
 update_display(DisplayValue); 
 } 
 
void update_display(uint16 value) { 
// Update the local display and relay the information downstream 
 cpld_set_ssd(value); 
 host_lights_report = value & 0x0F; 
 if (!lightsUrbInUse) { 
     lights_urb->transfer_buffer = &host_lights_report; 
     lights_urb->buffer_length = sizeof(host_lights_report); 
     lights_urb->callback = (PFNURBCALLBACK) lights_report_sent; 
  if (td_submit_URB(lights_urb) == ERROR) { 
   release_URB(lights_urb); 
   show_error(0xD); 
   }  
  else lightsUrbInUse = TRUE; 
  } 
 } 
 
// This function is called when device enumeration is complete or failed 
void sie1_enumeration_notify(USB_DEVICE *dev) { 
// This example host only supports the BAL device, check that this is it! 
 if ((dev->enum_state == ES_COMPLETE) && (dev->dev_descr.idVendor == 0x4242) && (dev-
>dev_descr.idProduct == 0xc003)) { 
  cpld_set_led(SESSION_ACTIVE_LED); 
  if (dev->direct_connect) direct_connect_present[dev->port] = TRUE; 
        } 
 else { 
  cpld_set_led(ERROR_LED); 
  cpld_set_ssd(0xF); 
        direct_connect_present[dev->port] = FALSE; 
        tpl_unlink_all_port( dev->port ); 
        device_cleanup( dev->sie, dev->port ); 
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        dealloc_device( dev ); 
  } 
 } 
 
// Now declare the device callbacks - this is se3 but using SIE2 
void SetConfigurationRequest(void) { 
    USB_DEVICE_REQUEST  *req; 
    req = (USB_DEVICE_REQUEST *) SIE2_DEV_REQ; 
// Let BIOS handle this request first 
 BIOSConfigurationChange(); 
// If I got configured then I can enable my data endpoints   
    if ((req->wValue & 0xFF) == 
configuration_descriptor.config_header.bConfigurationValue) { 
     Configured = TRUE; 
  cpld_set_ssd(0); 
  cpld_set_led(SLAVE_LED); 
// Ask BIOS to inform me when a lights report is received 
  setup_lights_report_callback(); 
  } 
 else { 
  Configured = FALSE; 
  cpld_clear_ssd();  
  cpld_clr_led(SLAVE_LED); 
  } 
 } 
 
void InterceptStandardRequest(void) { 
    USB_DEVICE_REQUEST  *req; 
    req = (USB_DEVICE_REQUEST *) SIE2_DEV_REQ; 
// BIOS does not handle GetDescriptor(Interface) so check for that 
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) && ((req->bmRequestType & 3) == 1) 
&& (req->wValue == 0x2200) ) { 
  report_descriptor_info.buffer = &report_descriptor; 
  report_descriptor_info.length = sizeof(report_descriptor); 
  report_descriptor_info.done_func = 0; // Let BIOS handle completion  
   susb_send(SIE2, 0, &report_descriptor_info); 
  }  
 else { 
// Pass the request on to BIOS to handle 
  BIOSStandardRequestHandler(); 
  } 
 } 
 
// The device owns the buttons 
void app_button_handler(BUTTON button) { 
// Report this change in button state to the host if we are configured 
 if (Configured) { 
  buttons_report_info.buffer = &device_buttons_report; 
  buttons_report_info.length = sizeof(device_buttons_report); 
  buttons_report_info.done_func = 0;  // Let BIOS handle completion  
  device_buttons_report = button; 
  susb_send(SIE2, 1, &buttons_report_info); 
  } 
// If the device is sharing the buttons then initiate a host_lights_report 
 if (share_local_buttons) button_press(button); 
 } 
 
// The device has just received a lights_report 
void lights_report_received (void) { 
 update_display(device_lights_report); 
// Wait for the next update 
 setup_lights_report_callback(); 
 } 
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void setup_lights_report_callback() { 
 lights_report_info.buffer = &device_lights_report; 
 lights_report_info.length = sizeof(device_lights_report); 
 lights_report_info.done_func = (PFNINTHANDLER) &lights_report_received; 
 susb_receive(SIE2, 2, &lights_report_info); 
 } 
 

Figure 5-3.  Host+Device Application Program 

Simple Example #8 – Using Scan Records 2 
 The default operation of BIOS initializes both SIEs using default descriptors.  
We do not want either of them initialized in this example so we must preload the short 
program shown in Figure 5-4 into the I2C eeprom of the EZ-Host mezzanine board 
while we are debugging the program with Insight/gdb. 
 
 
.section .init 
; First define the code that needs to be loaded 
; It will be prefixed with a Scan Header 
        .short  ScanSignature 
        .short  Length+2 
        .byte   LoadCommand 
        .short  _start 
.global _start 
_start: 
; Give control back to BIOS, this skips SIE1 and SIE2 initialization 
mov r15, 0x400  ; Reset the stack 
        sti                  ; First time interrupts are enabled 
        int IDLER_INT        ; This will not return               
.equ    Length, .-_start 
; Now define a scan record that will transfer control to my program 
        .short  ScanSignature 
        .short  2 
        .byte   JumpCommand 
        .short  _start 
 

Figure 5-4.  se8 used to modify BIOS operation 

 Click bash_env in the se8 directory to create a bash window.  Then enter 
“make” to build se8.bin.  Set dipswitches 6, 5, 4, and 3 on and enter “qtui2c 
se8.bin f” to program the eeprom then enter “exit” to close the bash window.  We 
have now given up our USB debug port so we must connect a serial cable between 
the EZ-Host mezzanine board and our development PC.  We connect the USB cable 
to our target PC and connect the EZ-OTG mezzanine board that has been 
programmed to look like a buttons and lights device to SIE1.  Your hardware should 
now look like Figure 5-5. 
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Figure 5-5.  Hardware staged for debug 

 
 Click on bash_env in the se7 directory to create a bash window.  Enter 
“make” to build our host+device example se7.  Click on bash_env again to create a 
second bash window and enter “cy16-elf-libremote –s –P com1 –b 28800” 
to create a serial connection to our target system.  In the first bash window enter 
“cy16-elf-gdb se7” to start the Insight debugger and click the RUN icon.  Your 
target settings for this example will be the same as the previous examples, even 
though we are shifting to using the serial port.  The program will be downloaded to 
the EZ-Host mezzanine board via the serial cable and the program will break at 
Main().  
 

Clear all breakpoints and click on continue.   
 
 On the target PC start the Buttons and Lights host program and verify that 
clicking buttons on the PC host display or on the EZ-Host mezzanine board cause 
the seven segment display to track.  The device is working! 
 
 On the EZ-OTG mezzanine board click buttons to ensure that the seven-
segment display advances.  Click buttons on the EZ-Host mezzanine board to ensure 
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that both seven segment displays track.  The displays may not start in sync but they 
will track after the first button press.  The host is working! 
 
 Stop the debug session and exit Insight.  You should also reset the libremote 
window (i.e. Control+C, up-arrow, enter). 
 
 The three seven segment displays did not remain in sync since the host 
application program keeps button presses it receives from the EZ-OTG mezzanine 
board as private.  Some applications will work this way.  We will make a small 
modification to our host program to forward these button presses to the device 
program that will, in turn, forward these to the PC host.  The device program will also 
forward seven-segment display changes down to the EZ-OTG mezzanine board. 
 
 Open app.c in the se7 directory and search for share_local_buttons and 
passthru_downstream_buttons.  These two boolean variables are initially set to false.  
You can change one or both of these variables to change how button press events 
are routed around the system.  Note that the same approach would be used for larger 
reports or data movement.  Try setting “passthru_downstream_buttons = TRUE;” and 
save app.c.  In the bash window enter “make,” then “cy16-elf-gdb se7” and in 
the Insight window click on RUN.  Clear all breakpoints and click “continue.” 
 
 Check the operation of all the buttons and observe all of the seven-segment 
displays now stay in sync. 
 
 The host+device application is working! 
 

Smart USB Devices 
 I have redrawn our example in Figure 5-6 so that we can better appreciate 
the capability we have created. 
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Figure 5-6.  EZ-Host/EZ-OTG is a very smart USB device 

 
 To the PC, the EZ-Host/EZ-OTG in this configuration looks just like a 
standard USB device.  It is fully programmable to enable it to look like any USB 
device.  It also has host capability – one host port on the EZ-OTG and two host ports 
on the EZ-Host.  This means that you can plug any standard USB device into this 
subsystem. 
 
 Have you designed a USB device and wished that you could attach a USB 
keyboard or a USB mouse to it?  Or needed mass storage, so longed for an A socket 
to attach a mini Flash Drive?  Well, with this EZ-Host/EZ-OTG sub system you can 
now do that! 
 
 Before we get too carried away with the solution possibilities that this opens 
up I must remind you that the EZ-Host/EZ-OTG must contain a device driver for 
whatever USB device that you want to attach to the host port(s).  We wrote a device 
driver in Chapter 4 and saw that it was not difficult.  This subsystem will be used as 
an embedded host and need only support a few specific USB devices – this is the 
targeted peripherals list. 
 
 I have two diverse examples to demonstrate the wide range of solutions that 
this host+device subsystem can create.  The first is a remote data acquisition and 
control system and the second is a video “black-box.” 
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Data Acquisition Example 
 USB has had limited adoption in remote data acquisition and control systems 
due to the limits in cable length and device count.  The USB specification limits the 
maximum length of a cable to 5 meters, the maximum hub depth to 5 and the 
maximum number of devices to 126.  This means that all 126 devices must be within 
a 30 meter radius of the PC host.  Our EZ-Host/EZ-OTG subsystem is a device so it 
must be within 30 meters of the PC host, but it is ALSO a host and, as such, can 
support ANOTHER 126 devices at a radius of 30 meters.  And we could do this 
again.  And again.  We are, in effect, creating multiple USB “sub-nets” as shown in 
Figure 5-7. 
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Figure 5-7.  Example of a smart USB device: data acquisition and control 

 
 In this DAQ example the EZ-Host/EZ-OTG is acting as a data concentrator 
for inbound data and a distribution point for outbound control information.  The data 
collection/control elements can be simple USB devices supporting a standard 
protocol such as HID.  The EZ-Host/EZ-OTG concatenates the data from its slave 
devices and forwards this upstream.  Similarly it receives concentrated control 
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information from upstream and redistributes it to its slave control devices.  The 
constant polling of the devices would quickly identify any broken connections and the 
plug-and-play nature of USB would enable the sub-net to be dynamically changed or 
repaired.   
 
 Simple Example 7 has most of the functionality that we need for this data 
acquisition example.  We will want, of course, to support multiple devices and will 
therefore need a hub driver.  The structure of this code will be just like se6_driver, 
and a working example will be presented in Chapter 7. 
 
 Additionally the se6_driver code must be extended to support multiple 
running devices: the code can be extended using two alternate methods, both of 
which separate the driver code from the driver data.  We need to run multiple copies 
of the driver code (ie multiple identical tasks) but each will operate on a different set 
of data.  We could declare the procedures as reentrant so that the working data was 
stored on the stack, or we could extend the device object to include the variables that 
the driver requires. 
 
 I would recommend using the “Buttons and Lights” device as your first data-
acquisition and control device and then add features to it.  Once your example code 
is built you would use the hardware setup shown in Figure 5-8 to test it. 
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Figure 5-8.  Data acquisition and control example 

 
 One of my reviewers pointed out that the device side of the EZ-Host/EZ-OTG 
host+device need not use USB.  If the data rate were low then an RS232 connection 
could be used – this is a little more work but it would mean that our data acquisition 
system could be a long way from the PC! 
 
 Another reviewer pointed out that the device connection need not be a 
permanent one.  The EZ-Host/EZ-OTG could gather data and store it.  An operator 
could visit the sub system and connect it to a laptop and upload the collected data 
and download new control parameters. 
 
 I’m sure that you too will think up many applications for this device+host 
subsystem. 
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Video Black Box Example 
 My second host+device example takes a standard USB device, in this case a 
video camera, and adds features to it.  Lets first consider the case where the PC is 
attached as shown in Figure 5-9 – we will remove it later. 
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Figure 5-9.  Smart USB device: video black box using standard USB camera 

 
 At power-on the EZ-Host/EZ-OTG host-side enumerates the video camera 
but does not enable it yet.   It passes this descriptor information to the device-side.  
The device-side then connects to the PC host and uses the enumeration information 
gathered from the camera.  The PC host, assuming that it is talking directly to the 
camera, loads an appropriate device driver that will instruct the camera to start 
sending video data.  Our host+device forwards this command to the camera and then 
forwards the video data from the camera to the PC host.  Neither the PC host or USB 
video camera is aware that we are intercepting and relaying information in both 
directions – this means that no extra software needed to be written at either end. 
 
 But we do more than just pass the video data through.  Our application 
program keeps a buffer of the last X second in its internal memory.  Note that the 
video data is not in a useful format such as frames.  All video cameras that operate at 
12 Mb/s use some kind of proprietary data compression on the video data and use 
bulk transfers to transport the data to the PC.  This encoded data is decompressed 
by a camera device driver at the PC.  So we cannot process the data but we can 
store it. 
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 Should the video stop for some reason then the EZ-Host/EZ-OTG 
host+device could be requested to play back the stored data.  This may tell us why 
the video stopped.  Or the host+device could be instructed to save data at strategic 
times for later playback. Once the system has been set up, the PC host could be 
removed – it could be reconnected at a later time to view stored video. 
 
 This video black box solution would be attractive in security and safety 
applications.  
 
What other USB device can you think of that would benefit from a smart “front-end?” 
 

Chapter Summary 
 It is straight forward to build a subsystem that supports a host connection 
and a device connection concurrently.  The host application program and the device 
application program can cooperatively share and process data thus enabling you to 
build a new range of smart devices.  A simple example of a buttons and lights HID 
device was worked in detail and two other examples, a remote data acquisition 
system and video black box, were outlined. 
 
 The simplicity with which the EZ-Host/EZ-OTG components enable you to 
construct feature-rich smart devices will quickly extend the range of USB solutions. 
  
 In the next chapter we shall look at a dual-role device that can operate as a 
host or as a peripheral and dynamically switch between the two roles.  This is the 
world of OTG. 
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Chapter 6:  Designing a dual-role device 

 We have seen, in the previous chapters, that the design of host capability 
and the design of device capability with the EZ-Host/EZ-OTG is straightforward, and 
we have several working examples.  These designs used an A connector for a host 
and a B connector for a device, and some of these examples used multiple 
connectors.  In this chapter we will design a dual-role device that is characterized by 
its single Mini-AB connector – this device is sometimes a host (other devices plug 
into it) and it is sometimes a device (it plugs into a host).  The firmware is more 
complex, especially since we have to support the swapping of roles, but we have 
most of the building blocks that we need to complete the design, from previous 
examples, so this project too will be straightforward. 
 
 A dual-role device is typically battery powered.  In fact, this was the model 
that the OTG Supplement was written around.  Figure 6-1 shows an overview of the 
dual-role example that we will develop.  We will re-use the host and device “buttons 
and lights” examples code so that we can focus on the new elements required for the 
dual-role functionality. 
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Figure 6-1.  Overview of dual-role example 

 The mezzanine boards do not support battery-powered operation so we have 
to trust that this operates correctly (it does, I prototyped a smaller, battery-powered 
board to test the firmware).   
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New dual-role concepts 
 The OTG Supplement that defines a dual-role device introduced several new 
concepts that I will demonstrate in this chapter’s example.  A USB cable has two 
ends, an A-end and a B-end.  This allows us to define two terms that describe the 
two roles of a dual-role device.  The cable defines the start-up configuration of each 
dual-role device: at the A-end of the cable is the default A-device or start-up host and 
at the B-end of the cable is the default B-device or start-up peripheral.  Note that if a 
cable is not inserted into a Mini-AB connector then both dual-role devices default to 
be a peripheral since the ID pin is floating (refer back to Figure 1-9 if required). 
 
 Battery-powered devices always manage themselves to minimum power 
consumption, so an A-device will turn off Vbus when it has finished using the USB 
cable.  If the B-device later decides that it needs to initiate some USB transfers then it 
will, if enabled, use Session Request Protocol (SRP) signaling to ask the host to re-
power the cable.  It will use Host Negotiation Protocol (HNP) to swap roles so that it 
can control the USB communications for a while.  When completed it will close the 
session and revert back to being a peripheral.  From an application program 
perspective these protocols are very easy as Frameworks handle them.  The 
Frameworks code is quite elaborate since it involves interacting hardware and 
firmware on the two devices, and we will cover what is happening “behind-the-
scenes” later in this chapter.  The application program must be extended to allow 
SRP and HNP sequences to be generated, and we shall do this via button presses. 
 

Simple Example #9 - Dual-role Buttons and Lights Device 
 The structure of the dual-role firmware will be the familiar Init_Task, 
Idle_Task and Callback routines as used in the other examples.  I defined a global 
variable, FWX_SYSTEM_MODE, which has values of STOP, HOST and SLAVE, so 
the firmware knows which role it is currently implementing.  I combined the “buttons 
and lights” device application code (se3) and the “Buttons and Lights” host 
application code (se6) to create the dual-role application code shown in Figure 6-2. 
 

I added code to the device-role buttons callback routine to detect two 
additional button presses, SRP and HNP.  I also added an OTG descriptor to the 
device configuration, and code to handle the SetFeature (HNP) command. 
 
 On the host side, I added code to handle the additional features by defining 
them in fwxcfg.h.  This will result in the host giving the peripheral an opportunity to 
implement an SRP and then an HNP.  The host enables the device to swap roles via 
a SetFeature (HNP) prior to suspending itself. 
 
 The fwxcfg.h configuration file in the se9 directory enables the SRP and HNP 
modules within Frameworks. 
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/* File: app.c.    Simple Example 9 
 * BAL host+device,  dual-role device on SIE1 (device on SIE2 for debugger) 
 */ 
 
#include "app.h" 
#include "sie1.h" 
 
/* Application data. */ 
// Most of the OTG functionality is handled by Frameworks 
// We control it's operation via the otg data structure (declared in otg.c) 
// OTG support is only available on Host port 0 
#define OTG_Port 0 
// Port changes are detected in an ISR and serviced in the IdleTask 
bool port_insert = FALSE; 
bool port_remove = FALSE; 
bool direct_connect_present = FALSE; 
 
// Declare the Host specific data 
// Provide lights report on button change and receives a buttons report 
uint8 host_buttons_report ATTR_USB_XFER_BUF_SECTION; 
uint8 host_lights_report  ATTR_USB_XFER_BUF_SECTION; 
int DisplayValue = 0; 
uint16 previous_button_state = ~0; 
 
// My Host driver needs two URBs - I allocate them in Start_Driver and re-use 
URB *buttons_urb = 0, *lights_urb = 0; 
bool lightsUrbInUse = FALSE; 
 
// Describe my driver is a Frameworks compatible format.  Only one may be active 
bool DriverInUse = FALSE; 
CLASS_DRIVER const se9_driver = { 
 0,     // class 
 0,     // subclass 
 3,     // if_class 
 0,     // if_subclass 
 0,     // protocol 
 0x4242,    // vendor_ID 
 0xc003,    // product_ID 
 se9driver_start,  // (*start)( USB_DEVICE *dev ) 
 se9driver_stop,  // (*stop)(void) 
 se9driver_run,  // (*run)(void) 
 se9driver_ioctl,  // (*ioctl)( USB_DEVICE *, uint16, uint16, uint16 ) 
 }; 
 
// Now declare the device data, see se3 for more details 
extern uint8 strings_descriptor; 
uint8 device_buttons_report ATTR_USB_XFER_BUF_SECTION = 0; 
uint8 device_lights_report  ATTR_USB_XFER_BUF_SECTION = 0; 
USBTXRXINFO reply = {0}, buttons_report_info = {0}, lights_report_info = {0}; 
bool buttons_report_inuse = FALSE;  // I recycle the same buffers 
 
USB_DEVICE_DESCRIPTOR const device_descriptor ATTR_SIE1_DESCR_SECTION = { 
 18, 1, 0x200, 0, 0, 0, 64, 0x4242, 0xc003, 0x100, 1, 2, 0, 1 
 }; 
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uint8 const report_descriptor[] ATTR_SIE1_DESCR_SECTION = { 
 6, 0, 0xFF, // Usage_Page (Vendor Defined) 
 9, 1,  // Usage (IO Device) 
 0xA1, 1,  // Collection (Application) 
 0x19, 1,  //   Usage_Minimum (1) 
 0x29, 8,  //   Usage_Maximum (8) 
 0x15, 0,  //   Logical_Minimum (0) 
 0x25, 1,  //   Logical_Maximum (1) 
 0x75, 1,  //   Report_Size (1) 
 0x95, 8,  //   Report_Count (8) 
 0x81, 2,  //   Input (Data,Var,Abs) = Buttons 
 0x19, 1,  //   Usage_Minimum (1) 
 0x29, 8,  //   Usage_Maximum (8) 
 0x91, 2,  //   Output (Data,Var,Abs) = Lights 
 0xC0   // End_Collection 
 }; 
 
USB_ALL_DESCRIPTORS const configuration_descriptor ATTR_SIE1_DESCR_SECTION = { 
 { /* config_descriptor header */ 
  9, 2, sizeof(USB_ALL_DESCRIPTORS), 1, 1, 0, 0xC0, 50 }, 
 { /* interface */ 
  9, 4, 0, 0, 2, 3, 0, 0, 3 }, 
 { /* class_descriptor */ 
  9, 0x21, 0x100, 0, 1, 0x22, sizeof(report_descriptor) }, 
 { /* EP1_In */ 
  7, 5, 0x81, 3, 8, 100 }, 
 { /* EP2_Out */ 
  7, 5, 2, 3, 8, 100 }, 
 { /* OTG */ 
  3, 9, USB_OTG_SRP_SUPPORT | USB_OTG_HNP_SUPPORT } 
 }; 
 
// Declare my Init_Tasks - there are several in this example 
// Frameworks expects to call these named routines 
void sie1_init(void) { 
 otg_init(); 
 } 
 
void app_pre_init(void) { 
 INPLACE_AND(IRQ_EN_REG, ~TMR0_IRQ_EN);    // Disable timer0 
 } 
  
void sie1_init_slave(void) { 
// I usually do this in App_Init, but Frameworks needs it done here 
// Update the descriptor pointers that BIOS uses 
 WRITE_REGISTER (SUSB1_DEV_DESC_VEC, &device_descriptor); 
 WRITE_REGISTER (SUSB1_CONFIG_DESC_VEC, &configuration_descriptor); 
 WRITE_REGISTER (SUSB1_STRING_DESC_VEC, &strings_descriptor); 
// I #define susb1_standard_handler and susb1_delta_cfg_handler in fwxcfg.h 
// Now initialize SIE1 
// Results in enumerating with the Host side of this app on other board 
 susb_init(SIE1, USB_FULL_SPEED); 
 INPLACE_OR(HOST1_IRQ_EN_REG, VBUS_IRQ_EN); 
 } 
 
void sie1_init_host(void) { 
// Initialise as a host 
 WRITE_REGISTER(HUSB_pEOT_ADR, 1200); 
 husb1_init(); 
 INPLACE_OR(HOST1_IRQ_EN_REG, (VBUS_IRQ_EN | A_CHG_IRQ_EN | B_CHG_IRQ_EN) ); 
 otg.a_set_b_hnp_en = FALSE; 
 port_insert = FALSE; 
 port_remove = FALSE; 
 } 
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uint16 se9driver_start(USB_DEVICE *dev) { 
// Frameworks will pass me a driver object for the BAL HID device 
// Only allow one copy of the driver to run 
 if (DriverInUse) return ERROR; 
 DriverInUse = TRUE; 
 cpld_set_led(HOST_LED); 
// Get two URBs needed for the interrupt reports 
 buttons_urb = alloc_URB(FALSE, 0 ); 
 if (!buttons_urb) return FALSE; 
 lights_urb = alloc_URB(FALSE, 0 ); 
 if (!lights_urb) return FALSE; 
// I have two URBs, initialize them 
// NOTE: since I know the device then I know it's attributes 
// In the general case I would parse the descriptors to discover this information 
// Initialize those elements of the urb that are constant 
 lights_urb->dev = dev; 
 lights_urb->dir = TD_CTRL_DIR_OUT; 
 lights_urb->usb_dev_addr = dev->address; 
 lights_urb->endpoint = 2;        // See NOTE 
 lights_urb->transfer_buffer = &host_lights_report; 
 lights_urb->buffer_length = sizeof(host_lights_report); 
 lights_urb->speed = dev->speed; 
 lights_urb->type = USB_INTERRUPT_TRANSFER_TYPE;  
 lights_urb->interval = 100;       // See NOTE 
// Initialize those elements of the urb that are constant 
 buttons_urb->dev = dev; 
 buttons_urb->dir = TD_CTRL_DIR_IN; 
 buttons_urb->usb_dev_addr = dev->address; 
 buttons_urb->endpoint = 1;       // See NOTE 
 buttons_urb->speed = dev->speed; 
 buttons_urb->type = USB_INTERRUPT_TRANSFER_TYPE; 
 buttons_urb->interval = 100;       // See NOTE 
 buttons_urb->transfer_buffer = &host_buttons_report; 
 buttons_urb->buffer_length = sizeof(host_buttons_report); 
 buttons_urb->callback = (PFNURBCALLBACK) buttons_report_received; 
// Post the buttons_urb to wait for an input report from the device 
 if (td_submit_URB(buttons_urb) == ERROR) { 
  release_URB(buttons_urb); 
  return FALSE; 
  } 
 else return SUCCESS; 
 } 
 
/* Declare the Idle_Tasks */ 
// Operation depends upon whether I am a Host or a Device 
void sie1_idle(void) { 
 FWX_SYSTEM_MODE mode; 
 mode = fwx_get_system_mode(SIE1); 
 switch(mode) { 
  case SYSTEM_MODE_HOST: 
// During Idle a host must look for device connect/disconnects 
   if ((port_insert || port_remove) && otg_is_host() ) { 
    enumerate_device(SIE1, OTG_Port, &direct_connect_present, 
    sie1_enumeration_notify); 
    port_insert = FALSE; 
    port_remove = FALSE; 
    } 
   break; 
  case SYSTEM_MODE_HOST_INACTIVE: 
  case SYSTEM_MODE_SLAVE_INACTIVE: 
   port_insert = FALSE; 
   port_remove = FALSE; 
   break; 
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  case SYSTEM_MODE_SLAVE: 
  default: break; 
  } 
 } 
 
void se9driver_run(USB_DEVICE *dev) { 
 } 
 
 
void app_task(FWX_SYSTEM_MODE mode[2]) { 
// Handle button presses in my Idle_Task as a Device 
 uint16 button_state; 
 button_state = CPLD_READ_BUTTONS(); 
 CPLD_CLEAR_BUTTON(button_state); 
 if (button_state != previous_button_state) { 
  previous_button_state = button_state; 
  if (button_state) app_button_handler(button_state); 
  } 
 } 
 
 
/* Declare Callback routines */ 
uint16 se9driver_stop(USB_DEVICE *dev) { 
 DriverInUse = FALSE; 
// Release any system resources we have 
 if (buttons_urb) { 
  td_clear_URB(buttons_urb); // Remove from td processor 
  release_URB(buttons_urb);  // Deallocate the urb 
  buttons_urb = 0; 
  } 
 if (lights_urb) { 
  td_clear_URB(lights_urb); 
  release_URB(lights_urb); 
  lights_urb = 0; 
  } 
 lightsUrbInUse = FALSE; 
 return SUCCESS; 
 } 
 
uint16 se9driver_ioctl(USB_DEVICE *dev, uint16 cmd, uint16 d1, uint16 d2) { 
// Nothing to do since no IOCTLs defined 
 if (DriverInUse) return SUCCESS; 
 return ERROR; 
 } 
 
 
// Handle button presses from device 
void buttons_report_received(URB *urb) { 
 if (urb->status == SUCCESS) { 
// The device sent me a button press (so I must be a host at the moment!) 
// Treat this as a local button press 
  app_button_handler(host_buttons_report); 
  } 
 else { 
// There was an error on the urb, so Frameworks will stop scheduling it 
// I should try and resubmit it to keep looking for input reports   
  urb->transfer_buffer = &host_buttons_report; 
  urb->buffer_length = sizeof(host_buttons_report); 
  urb->callback = (PFNURBCALLBACK) buttons_report_received; 
  if (td_submit_URB(urb) == ERROR) { 
   release_URB(urb); 
   } 
  } 
 } 
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// Device lights update report has been sent 
void lights_report_sent (void) { 
// Now OK to reuse lights urb 
 lightsUrbInUse = FALSE; 
 }  
 
 
void update_display(uint16 value) { 
// Update the local display 
 cpld_set_ssd(value); 
 if (otg_is_host()) { 
// Relay the information downstream if I am a host 
  host_lights_report = value & 0x0F; 
  if ( lights_urb != 0 && !lightsUrbInUse) { 
      lights_urb->callback = (PFNURBCALLBACK) lights_report_sent; 
   if (td_submit_URB(lights_urb) == ERROR) { 
    release_URB(lights_urb); 
    }  
   else lightsUrbInUse = TRUE; 
   } 
  } 
 } 
 
// This function is called when device enumeration is complete or failed 
void sie1_enumeration_notify(USB_DEVICE *dev) { 
// This example host only supports the BAL device, check that this is it! 
 if ((dev->enum_state == ES_COMPLETE) && (dev->dev_descr.idVendor == 0x4242) 
        && (dev->dev_descr.idProduct == 0xc003)) { 
  if (dev->direct_connect) { 
   direct_connect_present = TRUE; 
   if (otg.id == A_DEV) otg.b_conn = TRUE; else otg.a_conn = TRUE; 
   } 
  } 
 else { 
  direct_connect_present = FALSE; 
  tpl_unlink_all_port(dev->port); 
  dealloc_device(dev); 
  } 
 } 
 
 
// Now declare the device callbacks 
void susb1_delta_cfg_handler(void) { 
 USB_DEVICE_REQUEST  *req; 
 req = (USB_DEVICE_REQUEST *) SIE1_DEV_REQ; 
// BIOS signals me on ALL "set" commands, look for "Set Configuration" 
 if ((req->bmRequestType == 0) && (req->bRequest == USB_SET_CONFIGURATION)) { 
// If I got configured then I can enable my data endpoints   
  if ((req->wValue & 0xFF) == 
    configuration_descriptor.config_header.bConfigurationValue) { 
// Ask BIOS to inform me when a lights report is received 
   setup_lights_report_callback(); 
   } 
  } 
 } 
 
 
bool susb1_standard_handler(USB_DEVICE_REQUEST *req) { 
// BIOS does not handle GetDescriptor(Interface) so check for that 
 if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) && 
   ((req->bmRequestType & 3) == 1) && (req->wValue == 0x2200) ) { 
  reply.buffer = &report_descriptor; 
  reply.length = sizeof(report_descriptor); 



USB Multi-Role Device Design By Example 

86 

  reply.done_func = 0;  // Let BIOS handle completion  
   susb_send(SIE1, 0, &reply); 
  }  
 else { 
// BIOS does not handle OTG requests, so check for these too 
  if ((req->bRequest == USB_GET_DESCRIPTOR_REQUEST) && 
    ((req->bmRequestType & 3) == 0) && (req->wValue == 0x0900) ) { 
   reply.buffer = (void *) &configuration_descriptor.otg_descriptor; 
   reply.length = sizeof(USB_OTG_DESCRIPTOR); 
   reply.done_func = 0;  // Let BIOS handle completion  
    susb_send(SIE1, 0, &reply); 
   }  
  else { 
   if ((req->bRequest == USB_SET_FEATURE_REQUEST) && 
        (req->wValue == B_HNP_ENABLE) ) { 
    otg.b_hnp_en = TRUE; 
    susb1_finish(); 
    } 
   else if ((req->bRequest == USB_SET_FEATURE_REQUEST) 
  && (req->wValue == A_HNP_SUPPORT || req->wValue == A_ALT_HNP_SUPPORT)) { 
    susb1_finish(); 
    } 
   else { 
// Pass the request on to BIOS to handle 
    return FALSE; 
    } 
   } 
  } 
 return TRUE; 
 } 
 
 
void app_button_handler(BUTTONbutton) { 
// Operation of the buttons depends upon what mode I am in 
 FWX_SYSTEM_MODE mode; 
 mode = fwx_get_system_mode(SIE1); 
 switch (mode) { 
  case SYSTEM_MODE_SLAVE_INACTIVE: 
// The Left and Right buttons are used to initiate some action 
   switch(button) { 
    case BTN_LEFT: 
// This is interpreted as a "Request HNP" 
     switch(otg.state) { 
      case a_peripheral: otg.a_bus_req = TRUE; break; 
      case b_peripheral: otg.b_bus_req = TRUE; break; 
      default: otg.b_bus_req = FALSE; 
      } 
     break; 
    case BTN_RIGHT: 
// This is interpreted as a "Request SRP" 
     if (otg.state == b_idle) otg.b_bus_req = TRUE; 
     break; 
    default: break;  // Other buttons are ignorred 
    } 
   break; 
  case SYSTEM_MODE_SLAVE: 
// React to the INC and DEC buttons 
   switch(button) { 
    case BTN_UP: 
    case BTN_DOWN: 
// Forward these buttons to the host 
     if ((otg.state == a_peripheral) ||  
      (otg.state == b_peripheral)) { 
      buttons_report_info.buffer = &device_buttons_report; 
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      buttons_report_info.length = 
       sizeof(device_buttons_report); 
      buttons_report_info.done_func = 0;  
      device_buttons_report = button; 
      susb_send(SIE1, 1, &buttons_report_info); 
      } 
     break; 
    default: break;  // Other buttons are ignorred 
    } 
   break; 
  case SYSTEM_MODE_HOST_INACTIVE: 
  case SYSTEM_MODE_HOST: 
   switch(button) { 
    case BTN_UP: 
     if (++DisplayValue > 9) DisplayValue = 0;  
     update_display(DisplayValue); 
     break; 
    case BTN_DOWN: 
     if (--DisplayValue < 0) DisplayValue = 9; 
     update_display(DisplayValue); 
     break; 
    case BTN_LEFT: 
// This is interpreted as a "Request HNP" 
// Ask Frameworks to initiate a swap roles and call me back with the result 
     handle_hnp(app_hnp_notify); 
     break; 
    case BTN_RIGHT: 
// This is interpreted as a "End SRP Session" 
     if (otg_is_host()) { 
      otg.a_bus_drop = TRUE; 
      otg.a_bus_req = FALSE; 
      } 
     else if (otg.state == a_idle) otg.a_bus_req = TRUE; 
     break; 
    default: break; 
    } 
   break; 
  default: 
   break; 
  } 
 } 
 
 
// Was the HNP request successful? 
void app_hnp_notify(uint16 status) { 
 if (status != SUCCESS) otg.a_bus_req = TRUE; 
 } 
 
 
// The device has just received a lights_report 
void lights_report_received (void) { 
 update_display(device_lights_report); 
// Wait for the next update 
 setup_lights_report_callback(); 
 } 
 
void setup_lights_report_callback() { 
 lights_report_info.buffer = &device_lights_report; 
 lights_report_info.length = sizeof(device_lights_report); 
 lights_report_info.done_func = lights_report_received; 
 susb_receive(SIE1, 2, &lights_report_info); 
 } 
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// File sie1.c 
// Some "housekeeping" routines from app,c since this was getting a little long 
 
// Setup OTG to switch roles 
void app_switching_otg_roles(uint16 new_device_role) { 
 switch(new_device_role) { 
  case A_DEV: otg.a_bus_req = TRUE; break; 
  case B_DEV: otg.a_bus_req = FALSE; break; 
  } 
 } 
 
void sie1_host_cleanup(void) { 
 direct_connect_present = FALSE; 
 } 
 
void set_port_change( uint16 port ) { 
 port_insert = TRUE; 
 } 
 
void sie1_slave_reset_isr(void) { 
 otg_slave_reset_isr();   // Pass on this reset 
 } 
 
void sie1_host_ins_rem_isr(uint16 status_register) { 
// Handle plug/unplug events when operating as a Host 
uint16 high_count, loop_count, reg; 
#define min_high_count 250 
#define max_loop_count 8000 
 switch (otg.id) { 
  case A_DEV: 
   if (status_register & A_CHG_IRQ_FLG) { 
    if (status_register & A_SE0_STAT) { 
     otg.b_conn = FALSE;  // Disconnected 
     port_remove = TRUE; 
     } 
    else { 
     otg.b_conn = TRUE; 
     port_insert = TRUE; 
     if (otg.state == a_idle) { 
      high_count = 0; 
      loop_count = 0; 
      while ((high_count < min_high_count) &&  
        (loop_count < max_loop_count)) { 
       reg = READ_REGISTER(HOST1_STAT_REG) & A_SE0_STAT; 
       if (reg) high_count = 0; else ++high_count; 
       ++loop_count; 
       } 
      if (high_count >= min_high_count) { 
       otg.a_srp_det = TRUE;  // SRP detected 
       otg.a_bus_req = TRUE; 
       } 
      else otg.b_conn = FALSE; 
      } 
     } 
    } 
   break; 
  case B_DEV: 
   if (status_register & A_CHG_IRQ_FLG) { 
    if (status_register & A_SE0_STAT) { 
     otg.a_conn = FALSE;  // Disconnected 
     port_remove = TRUE; 
     } 
    else { 
     otg.a_conn = TRUE; 
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     port_insert = TRUE; 
     } 
    } 
   break; 
  } 
 if (port_insert) otg_insert_remove_isr(TRUE); // Tell Frameworks about event 
 } 
 

Figure 6-2.  Dual-role “buttons and lights” example. 

 
 Figure 6-2 contains a combined listing of app.c and sie1.c from the se9 
directory edited to better fit the size of these book pages.  The source file was getting 
a little large so I partitioned it into two elements.  The Design Examples on the 
Cypress release CDROM take this one additional step by breaking out the host code 
into deXdrvr.c. 
 
 As usual, click “bash_env” in the se9 directory to create a bash window, and 
enter “make” to build the example.  Review se9.lst and notice that the se9 object file 
is about 28KB – this is too big to fit into the EZ-OTG internal memory.  I used a few 
simple steps to reduce the size of the memory image of se9 to about 15KB so that 
we can debug this example using our two mezzanine boards. 
 

I created this compressed variant in the se10 directory so that you can follow 
the steps I took. 
 

Simple Example #10 – Standalone Dual-role Buttons and Lights Device 
 Compressing se9 involved a few simple steps:  by removing DEBUG from 
the compilations and using code optimization I saved 12KB!  This approach has the 
disadvantage that I cannot use the GDB debugger on se10 but, since the application 
code is the same as se9 that will run on the EZ-Host mezzanine card, then I believe 
that we are adequately covered.  With another 5KB of reduction required I focused 
on the Frameworks code.  Cypress provides the source code of all of the 
Frameworks elements in the /Common directory and this code is feature-rich 
supporting ALL aspects of a host/device/dual-role/multi-role design.  I removed some 
features that were not required for this simple dual-role HID example and easily got 
below 15KB.  The edited versions of these Frameworks files are also in the se10 
directory.  I did have to make a few minor edits to app.c to match the edits I made in 
the Frameworks files and this too is in the se10 directory – I made no functional 
changes.  Build se10 by clicking on “bash_env” in the se10 directory and then 
entering “make” in the bash window.  The search paths defined in the makefile cause 
the edited Frameworks files in the project directory to be used in preference to the 
standard Frameworks files in the /Common directory. 
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 Once se10.bin is built we must copy it into the EEPROM of the EZ-OTG 
mezzanine board.  Create an EEPROM image using: 

 
scanwrap se10.bin scanse10.bin 0x4a4 
 
Finally, with DIP switches 6, 5, 4, and 3 ON enter: 
 
qtui2c scanse10.bin f 
 
This will copy the scan record file into the EEPROM.  Now, when the EZ-

OTG mezzanine board is reset, it will be a standalone, dual-role, Buttons and Lights 
device.  We are now ready to test the dual-role example.  The EZ-OTG mezzanine 
board will be operating independently and we will control the EZ-Host mezzanine 
board using the debugger.  Set up the hardware as shown in Figure 6-3 and note that 
the only cable connection initially made is the debugger connection of SIE2 on the 
EZ-Host board to the development system. 
 

CPU

CPU

EZ-Host with se9

EZ-OTG
with se10

Firmware Development PC

Mini-AB Cable
Initially disconnected

Mini-AB
Receptacle

Mini-AB
Receptacle

CPUCPU

CPUCPU

EZ-Host with se9

EZ-OTG
with se10

Firmware Development PC

Mini-AB Cable
Initially disconnected

Mini-AB
Receptacle

Mini-AB
Receptacle

 
Figure 6-3.  Hardware used to debug the dual-role example. 

 
This example uses both SIEs of the EZ-Host mezzanine board: SIE1 as a 

dual-role connection and SIE2 for the debugger.  We will need the BIOS startup 
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modification code we developed in Chapter 3 loaded into the EZ-Host mezzanine 
board EEPROM before continuing.  So, open a bash window using bash_env from 
the se2 directory and enter “qtui2c eeprom.bin f” to program the EEPROM.  
Close this bash window. 
 
 Open two bash windows on the development PC.  In one window start the 
remote debug driver using “cy16-elf-libremote -u” and in the other window 
start the debugger using “cy16-elf-gdb se9.”  Click the RUN icon of Insight to get 
the program loaded, clear all breakpoints and click continue. 
 
 Initially, with no interconnecting cable, both boards will initialize as a 
peripheral – this is shown by the mezzanine board’s PERIPHERAL LED.  Now insert 
the A-end of the mini-AB cable into one of the boards, notice how it transforms itself 
into a host.  Removing the cable forces the board to revert to being a peripheral 
device. 
 
 The host-side of the example powers Vbus in anticipation of starting a 
session – note that the SESSION LED comes on at the same time as the HOST LED 
comes on.  Now, with the A-end of the mini-AB cable attached to one board plug the 
B-end of the cable into the other board – it’s SESSION LED will come on alongside 
it’s PERIPHERAL LED.  Pressing the INC and DEC buttons will cause both displays 
to change. 
 
 The host will terminate the session if you press the SRP/SESSION END 
button.  It will also start a new session if you press it again. 
 
 The host can change its local display even when a session is not active and 
this will cause the displays to become out of sync.  Once a session is started then the 
displays will resynchronize. 
 
 The device can also start a session if you press its SRP/SESSION END 
button but the host must terminate the session. 
 
 While a session is active, press the HNP button on the default host (i.e. the 
one with the A-plug inserted).  I implemented this as an “Offer HNP” and this gives 
the default peripheral an opportunity to swap roles and become a temporary host.  
This swapping of roles is indicated on the HOST and PERIPHERAL LEDs. 
 
 You can modify the operation of this dual-role device by changing the logic of 
the app_button_handler procedure.  Have fun! 
 
 This simple example showed that adding dual-role capability, via SRP and 
HNP, to an application program is straightforward since the complexity is handled 
within Frameworks.  The next section goes “behind-the-scenes” to explain what 
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Frameworks is doing.  There is no need for you to modify this code – in fact; I would 
recommend that you do not.  It has passed the USB-IF OTG protocol test suite and 
therefore is known to match the OTG Supplement Specification. 
 

OTG behind-the-scenes 
 The OTG Supplement describes the two OTG protocols using a combination 
of state machines and text.  This definition is very complete and covers all situations 
including error conditions.  But this completeness does make it more difficult to 
explain, so I must thank my colleague Lane Hauck for producing a simplified version 
by removing exceptional conditions.  I combined Lane’s simplified A-device and 
simplified B-device state diagrams to produce the simplified dual-role device state 
diagram shown in Figure 6-4.  I also redrew the diagram to better show the similarity 
of operation of both devices.  Note that Frameworks implements the full protocol as 
required by the OTG Supplement Specification, and I am only using this simplified 
diagram for explanation purposes. 
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Key: 1 = OTGID, defined by plug 2 = Vbus Valid 
 3 = A or B want to use the bus 4 = B wants to start a session 
 5 = B signals a connect 6 = A signals a connect 
 7 = B signals a resume 8 = B signals a resume 
 9 = A finished, offer HNP 10 = B finished, suspend bus 
 11 = HNP success, swap role 12 = B accepts HNP 

# used to signify NOT  
Figure 6-4.  Simplified dual-role device OTG state machine 
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 Figure 6-4 is in two halves – the left-hand side describes the operation of the 
A-device, or default host, and the right-hand side describes the B-device, or default 
peripheral.  The only time a device would traverse from one side to the other is 
following a major event such as plugging or unplugging the A-end of a USB cable.  In 
all other cases the A-device stays on the left and the B-device stays on the right.  
Note that each side has stable states for host and peripheral operation. 
 
 The diagram shows states, whose names are called out in the OTG 
Supplement, in rounded rectangles and shows state transitions as numbered arrows.  
A simplified description of the transition is shown in the key.  States that have “wait” 
in their name have an associated timer, and these timers may cause states 
transitions also. 
 
 Both OTG protocols, SRP and HNP, use voltage levels on the USB wires to 
signal progress through the state machine.  The default connection of two dual-role 
devices, shown in Figure 1-9 and repeated in Figure 6-5 for convenience, will also be 
used in this discussion. 
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Figure 6-5.   Default dual-role device connection 

 
 The cable in Figure 6-5 is shown adjacent to the connectors for clarity.  This 
discussion assumes that the USB cable is connected at both ends.  The A-end of the 
cable defines the default A-device and the B-end of the cable defines the default B-
device.  Note that no data line biasing resistors are connected at initial system power-
on.  The A-device will be in the a_idle state and the B-device will be in the b_idle 
state.  In the idle state both devices will turn on their pulldown resistors so the bus will 
be in a SE0 state.  This is point 1 in Figure 6-6, which shows time advancing down 
the page and signals increasing positively to the right. 
 
 Since this is the first time the A-device has been powered up it will start an 
OTG session to discover if anything is connected to its root hub.  It turns on Vbus and 
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moves to a_wait_vrise waiting for Vbus to be valid.  Once Vbus is valid the A-device 
will transition to a_wait_bcon.  The B-device meanwhile will also detect Vbus as 
valid and will transition to b_peripheral, where it removes its pulldown resistors and 
attaches a pullup resistor to D+.  This is point 2 in Figure 6-6.  The A-device sees this 
connection as a rise in D+ voltage and transitions to a_host.  The A-device will 
enumerate the B-device and will issue standard USB requests, which, in our 
example, will be the interchange of HID reports created by the pressing of the INC 
and DEC buttons.  This is the standard operating mode of USB, and this too is shown 
in Figure 6-6.  
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Figure 6-6.  State transitions from power-on 

 
 In our example, we defined responses to button presses to mean that the 
host has completed its task and can remove Vbus.  It first issues a SetFeature(HNP) 
command to the device, which will allow it to take control of the bus if it desires.  The 
A-device will then transition to a-suspend.  This is point 3 in Figure 6-6. 
 
 On arrival at a_suspend the A-device will start a timer, a_aidl_bdis_tmr.  If 
the B-device wishes to take control of the bus, then it must indicate its intent by 
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disconnecting its D+ pullup resistor before this timer expires.  In our example the B-
device does not need the bus yet so it does not disconnect.  This causes the A-
device to transition to a_wait_vfall where it turns off Vbus to end the session.  This is 
point 4 in Figure 6-6.  Once Vbus has fallen below the valid session voltage the A-
device will transition to a_idle.  The removal of Vbus will cause the B-device to 
transition to b_idle.  We are back where we started at power on!  This is point 5 in 
Figure 6-6. 
 
 We can start a new session by pressing the SRP button on either board.  If 
we press the A-device button the sequence will run exactly as it did for the power-on 
case.  Note that a real-life A-device does not need to initiate SRP since it is the host 
and therefore may start a session whenever it desires – the button-press is for 
demonstration purposes in this example.  In real-life it will be the B-device that 
initiates a session using SRP;  this example uses a button-press as the starting 
action.  The B-device, realizing that Vbus is absent, must initiate a Session Request 
Protocol.  It will transition to b-srp-init. 
 

Session Request Protocol 
 A B-device must employ two methods to signal an SRP to an A-device – the 
first is “data-line pulsing” and the second is “Vbus pulsing.”  The A-device is required 
to respond to at least one of these methods.  The B-device must wait until Vbus is 
lower than (VA_SESSION_VLD min) and the data lines have been in a SE0 state for 
at least 2 msec before it is allowed to start signaling. 
 
 Data-line pulsing is the simpler method since the B-device need only attach 
its D+ pullup for a period of 5 to 10 msec.  Unfortunately, some non-compliant 
devices can cause this method to fail.  This is shown as point 1 in Figure 6-7. 
 
 Vbus pulsing relies on time constants to charge and discharge a known 
capacitance at the A-device.  A dual-role device will have a maximum capacitance of 
6.5uF while a standard host will have a minimum capacitance of 97uF.  By driving the 
Vbus line with a constant current of 8mA the B-device can successfully generate a 
signal pulse that meets the OTG Supplement Specification.  The EZ-Host/EZ-OTG 
components integrate a Vbus source, and Frameworks uses an internal timer to 
generate a pulse of the correct width.  This is point 2 in Figure 6-7. 
 
 After generating the SRP signal, the B-device returns to b_idle and waits for 
Vbus to turn on.  This is point 3 in Figure 6-7. 
 
 In response to the SRP signaling the A-device will turn on Vbus and will 
transition to a_wait_vrise.  Once the session voltage is valid, the A-device will 
transition to a_wait_bcon and the B-device will transition to b_peripheral.  The A-
device will detect the B-device and will transition to a_host.  Following enumeration, 
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since the A-device has no pending USB transfers to implement, it will transition to 
a_suspend.  This is the same sequence as the power-on case described in Figure 6-
6.  This is point 3 in Figure 6-6 and point 4 in Figure 6-7. 
 
 The B-device will detect this suspend but this time, since it has some USB 
transfers it needs to implement, and it has received a SetFreature(HNP) from the A-
device, it transitions to b_wait_acon.  In this state the B-device detaches its pullup 
resistor causing the bus to fall to an SE0 state.  This is point 5 in Figure 6-7. 
 
 The host detects this SE0 state on the bus and treats it as positive 
acknowledgement that the peripheral wants to switch to a host role.  The host 
therefore transitions to a_peripheral where it attaches a pullup to its D+ line.  This is 
point 6 in Figure 6-7. 
 
 The B-device detects the attachment of the pullup resistor and transitions to 
b_host where it operates as a standard USB host in control of all USB transfers.  
This is point 7 in Figure 6-7. 
 
 We have swapped roles! 
 
 When the B-device has completed its data transfers it will suspend the bus 
and transition into b_peripheral.  The A-device will detect the suspended bus and 
will transition to a_wait_bcon.  Since the A-device doesn’t need the bus either, it 
then transitions to a_wait_vfall where it turns off Vbus.  When Vbus drops below the 
valid session voltage both devices will return to their idle states, a_idle and b_idle. 
 
 We are back at the power-on state.  This is point 8 in Figure 6-7. 
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Figure 6-7.  State transitions with B-device initiating SRP signaling 

 

Chapter Summary 
 Designing a dual-role device with the EZ-Host/EZ-OTG is straightforward 
since the complexity is handled by integrated hardware and the Frameworks 
reference code.  We worked through a simple example that used a “buttons and 
lights” host application program and a “buttons and lights” peripheral application 
program.  The simple nature of the example allowed us to focus on the method, the 
process and the new elements of SRP and HNP.  A more complex dual-role device, 
such as a digital still camera, would follow the same method – the host application 
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program would resemble a printer class driver and the peripheral application program 
would resemble a mass storage class driver. 
 
 In the next chapter we will explore the Host Port Interface (HPI) that both the 
EZ-Host and the EZ-OTG components support.  A “main” processor will use the EZ-
Host/EZ-OTG as a co-processor.  The HPI interface is an orthogonal choice with 
respect to the USB interfaces; therefore the examples that we have implemented so 
far would all operate.  We will be able to, of course, do many more examples using 
this co-processor mode. 
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Chapter 7:  Using EZ-Host/EZ-OTG in co-processor 
mode as a USB host controller 
 
 
 The previous chapters have described applications where the EZ-Host/EZ-
OTG component has been used in standalone mode.  In standalone mode the EZ-
Host/EZ-OTG is the only processor in the system and it is responsible for running the 
application program and for managing the USB connections.  These USB 
connections have been host, device or a combination of the two roles.  The EZ-
Host/EZ-OTG also support a co-processor mode, and this is an orthogonal choice 
with respect to the USB modes: this means that ALL of the examples that we have 
worked in this book so far could be re-partitioned into a “main-CPU” section that 
handled the application program and a “co-processor” section that handled the 
details of the USB connections. 
 

We have seen that the EZ-Host/EZ-OTG are very capable sub-systems so 
they could handle ALL of the USB awareness of a project.   
 
 In co-processor mode the EZ-Host/EZ-OTG is a slave device to a main 
processor.  The main processor is running the application program and, most likely, 
an operating system, and this processor is using the EZ-Host/EZ-OTG to manage a 
USB subsystem on its behalf.  The communications channel between the main 
processor and the EZ-Host/EZ-OTG component can be implemented as a parallel 
interface using HPI or as a serial interface using HSS or SPI.  My example will use 
HPI, but the software has been written such that a swap to HSS or SPI only affects a 
single module. 
 
 Embedded Linux was chosen as target for this example since this is popular 
in the intended application range of the EZ-Host/EZ-OTG components and the 
development environment is readily available.  The examples use Linux release 
2.4.18, and an overview of the layered structure of this Linux release is shown in 
Figure 7-1. 
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Figure 7-1.  Linux is implemented in layers 

 
 Linux 2.4.18 is a USB-aware release: device drivers are included for a UHCI 
host controller and for an OHCI host controller.  There is also an EHCI host controller 
in experimental release 2.5.x, and the source code for this is downloadable for review 
if required.  The 2.4.18 release also contains several USB class drivers such as HID, 
audio, hub and mass-storage, and we shall utilize this capability later in this chapter. 
 
 Our project for this chapter, then, is to write a host controller driver for the 
EZ-Host/EZ-OTG component that will replace the UHCI/OHCI driver in the standard 
release.  This is a well-defined problem since all of the software interfaces to Linux 
are already defined – we will be writing a standard Linux device driver, and many 
examples, books and tools are available to help us. 
 
 A USB host controller always has a root hub – this is part of the USB 
specification.  In our case, the EZ-Host can have up to four root hubs, so our host 
controller driver will have to manage these.  Four root hubs means that the EZ-Host 
can support four separate USB segments with up to 126 devices on each for a total 
of 504 devices.  The EZ-OTG has two root hubs so it can support 252 USB devices. 
 
 We chose a StrongArm platform for the target system and the CY3663 co-
processor development board is shown in Figure 7-2.  StrongARM is well supported 
by Linux, and there are many device drivers and examples available.  Many PDAs 
use StrongARM + Linux to deliver a capable hand held device. 
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Figure 7-2.  StrongARM co-processor development board. 

 
 A block diagram of the CY3663 development board is shown in Figure 7-3.  
The 133MHz StrongArm processor is supported with 16MB of Flash Memory, 512KB 
of SRAM, 32MB of DRAM, local IO including buttons, LEDs, seven segment display 
and a 2 line LCD display, an Ethernet connection and, most importantly for us, an 
expansion connector where the EZ-Host or EZ-OTG mezzanine boards can be 
attached. 
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Figure 7-3.  Block diagram of StrongArm coprocessor platform 

 
 The StrongArm processor is a 32-bit RISC CPU with a 32-bit address bus.  
The development platform sparsely populates this memory map.  The flash memory 
is at 0 and is organized as shown in Figure 7-4.   A Linux system requires a file 
system, and this example uses a Flash File System driver – the bootloader is in the 
first 128KB Flash block (with some configuration parameters in the next two blocks), 
and this loads a Linux image from Flash blocks 4 through 31.  Flash blocks 32 
through 127 are used as a 12MB disk drive.  All of the Linux sources and build scripts 
are provided on the Cypress release CD, so we can rebuild the Linux kernel and 
copy new boot images to the Flash memory as often as required. 
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Figure 7-4.  The flash memory operates as a disk drive. 

 
 The static Ram occupies physical memory space from 800000H to 
87FFFFH, the dynamic memory occupies memory space from C0000000H to 
C1FFFFFFH and the IO is in memory page 48xxxxxxH.  The StrongArm processor 
has several serial ports, and two are made available on the development platform.  
An Ethernet controller is also available.  A pre-configured version of Linux is included 
in the Flash memory to support this hardware platform.  The elements configured into 
the kernel are shown in Figure 7-5. 
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Figure 7-5.  Starting Linux kernel implementation 
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USB Host Controller Driver 
 The EZ-Host/EZ-OTG host controller driver is built using three major pieces 
as shown in Figure 7-6.  The host controller driver (hcd) accepts USB Request 
Blocks (URBs) from the kernel; hcd uses a low-level communications driver (lcd) to 
communicate with the EZ-Host/EZ-OTG component; and the virtual root hub driver 
(hcd_rh). 
 

Low-level Communications Driver (lcd)

Host Controller Driver (hcd)

Root Hub Driver (hcd_rh)

URBs IN

lcp commands OUT

Low-level Communications Driver (lcd)

Host Controller Driver (hcd)

Root Hub Driver (hcd_rh)

Host Controller Driver (hcd)

Root Hub Driver (hcd_rh)

URBs IN

lcp commands OUT  
Figure 7-6.  Structure of EZ-Host/EZ-OTG host controller driver. 

 
 We studied the operation of a host controller driver in Chapter 5.  The Linux 
implementation in this chapter essentially does the same task but has been 
expanded to support up to four root hubs.  This driver is processing many lists as 
shown in Figure 7-7. 
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Figure 7-7.  Host controller driver processes lists 

 
 The Linux kernel calls Submit_URB to initiate a USB transfer.  The hcd first 
checks if the URB is targeted for one of the root hubs and diverts it if necessary.  The 
hcd supports four root hubs, and this processing is described later.  It is essential that 
multiple URBs sent to the same device endpoint are kept in order so the hcd 
manages up to 32 queues per active device – this equates to 16 input endpoints and 
16 output endpoints as required by the USB specification. 
 
 The hcd will scan through the URB queues during its Idle_Task and will 
create one or more Transfer Descriptors (TD) for each new URB.  The hcd will add 
these TDs to the TD_List matching the type of transfer that the URB requires 
(isochronous, interrupt, control or bulk). 
 
 Every 1 msec the hcd must supply a new NextFrame TD_List for each SIE 
within the EZ-Host/EZ-OTG component.  It creates this list by examining the status of 
the TD_List from the previous frame and also including new transactions from the 
queued TD_Lists.  It allocates TD’s in order as defined by the UHCI specification: 
isochronous first, followed by interrupt, then control and bulk if time is available in the 
frame.  Even though each SIE on the EZ-Host component has two host ports, the 
12Mb/s bandwidth is shared, so the hcd need only be concerned that it is filling each 
NextFrame_TD_List to maximum 12 Mb/s capacity.  Once the NextFrame_TD_List is 
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built the hcd will use the lcd module, described next, to send the list to the EZ-
Host/EZ-OTG component. 
 

Low-level Communications Driver 
 The example low-level communications driver (lcd) uses the Host Port 
Interface (HPI) of the EZ-Host/EZ-OTG component to transfer data.  If your 
application requires low USB bandwidth then the High-Speed-Serial (HSS) or Serial-
Peripheral-Interface (SPI) could be used.  All three mechanisms use the same Link-
Control-Protocol (lcp) that is implemented by the EZ-Host/EZ-OTG BIOS.  Figure 7-8 
shows the hardware detail of HPI.  From the main CPU’s perspective, this is four 16-
bit memory locations and an interrupt line. 
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Figure 7-8.  HPI hardware detail 
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 The main CPU writes to the address register to setup a pointer into the 
internal memory of the EZ-Host/EZ-OTG.  When the main CPU reads from, or writes 
to, the data register it is actually accessing internal memory locations.  The address 
register is auto-incremented on each data register access so the main CPU can 
efficiently read or write blocks of internal memory.  This HPI channel has priority 
access to the internal memory, and a transfer rate of 16MB/sec is achievable. 
 
 A main CPU write to the mailbox register will generate an interrupt to the EZ-
Host/EZ-OTG CPU informing it that it should come and read the command that the 
main CPU has sent.  When the EZ-Host/EZ-OTG has completed its command, it 
writes a response into the mailbox register, and this generates an interrupt to the 
main CPU.  When the main CPU reads this response from the mailbox the EZ-
Host/EZ-OTG CPU will be alerted via a separate interrupt.  For those readers who 
remember the 8042 used in the early PC AT design to control the keyboard, this is 
the same mechanism but at least two orders of magnitude more capable! 
 
 The main CPU can also read a status register that summarizes the state of 
the pending interrupts of the EZ-Host/EZ-OTG component. 

Link Control Protocol  
 BIOS implements a Link Control Protocol (LCP) to assure reliable data 
transfer using HPI (or HSS or SPI).  The base set of commands is shown in Figure 7-
9.  You have learned, from previous chapters, that you can change or augment this 
command set to better suit your application. 
 

COMM_RESET 
COMM_JUMP2CODE  
COMM_CALL_CODE 
COMM_WRITE_CTRL_REG 
COMM_READ_CTRL_REG 
COMM_READ_XMEM 
COMM_WRITE_XMEM 
COMM_EXEC_INT 

Figure 7-9.  Base LCP Commands 

  
 Additionally a set of parameter registers, COMM_REG 0 through 
COMM_REG13, is also defined since all of the commands require data values.  BIOS 
only implements a single parameter block, and this means that lcp commands must 
be executed serially.  Typically hcd will generate many lcp commands, so lcd 
implements a queue and passes lcp commands to BIOS in the time order that they 
were requested.  BIOS will generate a response for each command, and lcd will 
stage the next lcp command while executing the callback for the previous lcp 
command. 
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Root hub functionality 
 A root hub is a special case – it has all of the attributes of a standard hub (as 
defined by the USB specification), but it is not connected downstream of the USB 
host controller; it is embedded inside the host controller.  From a software 
perspective this means that hcd should route URBs targeted at the root hub directly 
to a local hub driver rather than create TDs to be scheduled on the bus. 
 
 During initialization hcd will call rh_connect.  The root hub module provides 
all of the descriptors required for a hub and simply does a USB_connect.  The Linux 
USB core software will enumerate this device in the standard way and discover that 
its descriptors define it to be a hub.  The kernel will therefore match the root hub with 
its hub class driver and will initialize it!  It will create a device object and assign a 
USB_device ID to it.  The Linux kernel is USB aware, and its core supports USB 
device enumeration and several USB class drivers.  Our example uses the Linux 
kernel code and, therefore, there is not a lot of new code that we have to write to 
support root hub operation.  Our example will actually call rh_connect four times to 
support the four root hubs on the EZ-Host component. 
 
 The root hub module will make calls into lcd to send commands and read 
status from the EZ-Host/EZ-OTG component. 
 

Testing our host controller  
 The hcd example code is written to be part of the kernel code.  During 
development we started writing the code as loadable modules but had problems with 
the order that the Linux kernel would initialize the subsystems – we fixed this with 
static binding into the kernel.  We found that it took only about a minute to rebuild a 
kernel image after making changes to hcd and so continued on this route. 
 
 Open the Cypress/USB/OTG-Host/Source/coprocessor/linux directory and 
identify a Linux kernel configuration file called .config.  I ran “$make config” from a 
bash window and selected options from the main build menu to create this example. 
Figure 7-10 summarizes the options chosen.   
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Figure 7-10.  Linux configuration for coprocessor example. 
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I then ran “$make dep” to create the required dependency lists and then 

“$make Image” to create a bootable Linux kernel image which I named linux.img.  
Full instructions on building a kernel and downloading this into the Flash memory of 
the StrongArm development board are detailed in the Cypress document “CY3663 
Hardware User's Manual.”  Follow these instructions to download vmlinux.img.  
Attach the OTG mezzanine board to the StrongArm board and an RS232 cable to 
serial port 1 of the StrongArm board.  This RS232 cable should be attached to your 
development PC that is running a terminal program, such as Hyperterminal, at 
115200 baud.  Your hardware should look like the setup shown in Figure 7-11. 
 

As a download alternative you could set up your Firmware Development PC 
to be a tftp host.  This Ethernet connection is explained in the “CY3663 User's 
Manual” and is worth the effort to set up if you plan on creating a range of Linux 
images for development and debug.  This is also shown in Figure 7-11. 
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Figure 7-11.  Hardware ready to test coprocessor example 
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 Set the DIP switches on the StrongArm board to all OFF and set the 
mezzanine DIP switches to all OFF. Now attach power to the mezzanine board or the 
StrongArm board.  The mezzanine board will be held in RESET while the StrongArm 
board boots the Linux kernel from its Flash memory.  The LCD display will display 
“Initializing…”, and a verbose collection of kernel messages will be displayed on the 
terminal.  These messages will indicate the progress of the Linux initialization.  The 
LCD display will then change to “Ready”, and you will be prompted to Login.  Use the 
username “root.”  You now have a complete embedded Linux system ready for 
action!  Explore the directory structure and files within the Flash file system, and note 
that you have a USB hcd installed. 
 
 You can now plug USB devices into the mezzanine board.  They will be 
identified and a description will be displayed on the terminal.  You can try whatever 
you have in your lab but I would recommend attaching a set of USB speakers to one 
mezzanine port and a portable Flash drive into the other.  Both will be recognized 
and will match class drivers integrated into the vmlinux.img kernel.  The Flash drive 
may not automatically mount its filesystem – if not enter “mount –t vfat 
/dev/sda1 /mnt/usbhd.”  Now copy cypress.wav from the root file system onto 
your flash drive.  If you have a large wav file on your flash drive already then you can 
use that in the next step. 
 

Now enter the following: 
  
 ./bplay -d /dev/dsp -s 11000 -b 8 /mnt/usbhd/cypress.wav  
 

You will hear sound on your speakers. 
 
 Bplay is using bulk transfers (via the mass storage class driver) to read data 
from the Flash disk and is using isochronous transfers (via the audio class driver) to 
send this data to your speakers.  The transactions were set up using control and 
interrupt transfers.  All of this data is passing through our hcd and being passed to 
the mezzanine board by lcd. 
 
 The EZ-Host/EZ-OTG based host controller is working! 
 
 The Cypress Release CDROM contains many more examples.  Starting from 
C:/Cypress/USB/OTG-Host/Source/coprocessor, look in the following subdirectories: 

� de_app 
� linux/drivers/usb/cy7c67300/dedrv 
� linux/drivers/usb/cy7c67300/usbd/dedev 

 
Again all of the source code and build scripts are provided so that you can get a head 
start on your project.  Some of these examples use Linux as a device and some as a 
dual-role device.  A device driver template, originally written by Lineo, was used to 
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develop a device-side function driver that was readily integrated into the Linux kernel.  
Linux has rich USB support and we are beginning to see this same underlying 
support being added to other embedded operating systems. 
 

Chapter Summary  
 We integrated the EZ-Host/EZ-OTG into a system as a co processor.  We 
chose a system that was already USB-aware so that we could focus on the EZ-
Host/EZ-OTG aspects of the project.  As a co processor the EZ-Host/EZ-OTG 
managed up to four root hubs (two when using the EZ-OTG) on behalf of an 
embedded Linux implementation.  This off-loading of the USB communications task 
gave the Linux “main” CPU more time to implement other tasks. 
 
 We essentially swapped out a PC-based UHCI controller driver for an 
embedded EZ-Host/EZ-OTG based driver.  The project was well defined since 
standard Linux device driver interfaces were used.  We developed a low-level 
communications driver to isolate the hardware dependencies from the host controller 
driver.  Since Linux is USB-aware it includes many USB class drivers and we 
demonstrated moving a wav file from a mass storage device to an audio device. 
 
 
 
 
 
 
 Throughout this book the EZ-Host/EZ-OTG components have been used in a 
wide range of applications.  Example code has been provided for each application 
and the source code and build scripts will enable you to choose an example close to 
your intended use and tune it to best fit your application solution. 
 
 I trust that this book has given you a head start with unlocking the potential 
within the EZ-Host and EZ-OTG components. 
 
 I wish you success in your USB Design projects 
 
      John Hyde 
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